Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 | 314216x 314216x 1x 28198x 35x 28163x 28163x 28163x 1x 129796x 11x 129785x 120075x 9710x 9710x 9710x 1x 1x 1x 1x 2718427x 2718426x 2718425x 2718425x 2718425x 2718425x 1x 8662223x 8662221x 8662221x 1083x 8662221x 8662221x 8662221x 1x 117x 116x 116x 116x 106x 10x 2x 8x 7x 114x 481x 114x 1x 22x 21x 20x 1x 19x 19x 17x 2x 19x 39x 39x 19x 1x 1x 4x 3x 1x 3x 2x 1x 16x 15x 14x 13x 13x 13x 1x 16x 15x 14x 13x 13x 13x 1x 58x 57x 56x 55x 54x 54x 54x 54x 54x 1x 2022x 2020x 1x 2019x 1x 1x 11x 10x 9x 9x 1x 3x 2x 1x 1x 1x 1288x 1287x 1286x 1286x 1286x 1286x 1x 1285x 1x 1199x 1198x 1197x 1x 1x 1x 1x 1x 104x 103x 102x 101x 101x 101x 1x 6x 5x 4x 3x 3x 3x 1x 5436035x 5436034x 5436033x 5436032x 5436032x 5436032x 1x 632x 631x 630x 629x 629x 629x 1x 8153738x 8153737x 8153736x 8153735x 8153735x 8153735x 1x 9x 8x 7x 6x 6x 6x 1x 49209x 49208x 49207x 49207x 49207x 1x 20x 19x 18x 18x 18x 1x 1x 14x 13x 12x 11x 10x 10x 10x 1x 1x 1x 590x 589x 588x 588x 588x 1x 1x 4x 3x 2x 2x 2x 1x 1x 2x 1x 11475x 1x 1x 131x 1x 1x 1x 1x 1x 896x 1x 1216x 1x 104x 1x 672x | import Check from "./Check.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import CesiumMath from "./Math.js";
/**
* A 2D Cartesian point.
* @alias Cartesian2
* @constructor
*
* @param {number} [x=0.0] The X component.
* @param {number} [y=0.0] The Y component.
*
* @see Cartesian3
* @see Cartesian4
* @see Packable
*/
function Cartesian2(x, y) {
/**
* The X component.
* @type {number}
* @default 0.0
*/
this.x = x ?? 0.0;
/**
* The Y component.
* @type {number}
* @default 0.0
*/
this.y = y ?? 0.0;
}
/**
* Creates a Cartesian2 instance from x and y coordinates.
*
* @param {number} x The x coordinate.
* @param {number} y The y coordinate.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.fromElements = function (x, y, result) {
if (!defined(result)) {
return new Cartesian2(x, y);
}
result.x = x;
result.y = y;
return result;
};
/**
* Duplicates a Cartesian2 instance.
*
* @param {Cartesian2} cartesian The Cartesian to duplicate.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined)
*/
Cartesian2.clone = function (cartesian, result) {
if (!defined(cartesian)) {
return undefined;
}
if (!defined(result)) {
return new Cartesian2(cartesian.x, cartesian.y);
}
result.x = cartesian.x;
result.y = cartesian.y;
return result;
};
/**
* Creates a Cartesian2 instance from an existing Cartesian3. This simply takes the
* x and y properties of the Cartesian3 and drops z.
* @function
*
* @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.fromCartesian3 = Cartesian2.clone;
/**
* Creates a Cartesian2 instance from an existing Cartesian4. This simply takes the
* x and y properties of the Cartesian4 and drops z and w.
* @function
*
* @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.fromCartesian4 = Cartesian2.clone;
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
Cartesian2.packedLength = 2;
/**
* Stores the provided instance into the provided array.
*
* @param {Cartesian2} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
Cartesian2.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
array[startingIndex++] = value.x;
array[startingIndex] = value.y;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Cartesian2} [result] The object into which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
if (!defined(result)) {
result = new Cartesian2();
}
result.x = array[startingIndex++];
result.y = array[startingIndex];
return result;
};
/**
* Flattens an array of Cartesian2s into an array of components.
*
* @param {Cartesian2[]} array The array of cartesians to pack.
* @param {number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements.
* @returns {number[]} The packed array.
*/
Cartesian2.packArray = function (array, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
const length = array.length;
const resultLength = length * 2;
if (!defined(result)) {
result = new Array(resultLength);
} else if (!Array.isArray(result) && result.length !== resultLength) {
//>>includeStart('debug', pragmas.debug);
throw new DeveloperError(
"If result is a typed array, it must have exactly array.length * 2 elements",
);
//>>includeEnd('debug');
} else if (result.length !== resultLength) {
result.length = resultLength;
}
for (let i = 0; i < length; ++i) {
Cartesian2.pack(array[i], result, i * 2);
}
return result;
};
/**
* Unpacks an array of cartesian components into an array of Cartesian2s.
*
* @param {number[]} array The array of components to unpack.
* @param {Cartesian2[]} [result] The array onto which to store the result.
* @returns {Cartesian2[]} The unpacked array.
*/
Cartesian2.unpackArray = function (array, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 2);
if (array.length % 2 !== 0) {
throw new DeveloperError("array length must be a multiple of 2.");
}
//>>includeEnd('debug');
const length = array.length;
if (!defined(result)) {
result = new Array(length / 2);
} else {
result.length = length / 2;
}
for (let i = 0; i < length; i += 2) {
const index = i / 2;
result[index] = Cartesian2.unpack(array, i, result[index]);
}
return result;
};
/**
* Creates a Cartesian2 from two consecutive elements in an array.
* @function
*
* @param {number[]} array The array whose two consecutive elements correspond to the x and y components, respectively.
* @param {number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*
* @example
* // Create a Cartesian2 with (1.0, 2.0)
* const v = [1.0, 2.0];
* const p = Cesium.Cartesian2.fromArray(v);
*
* // Create a Cartesian2 with (1.0, 2.0) using an offset into an array
* const v2 = [0.0, 0.0, 1.0, 2.0];
* const p2 = Cesium.Cartesian2.fromArray(v2, 2);
*/
Cartesian2.fromArray = Cartesian2.unpack;
/**
* Computes the value of the maximum component for the supplied Cartesian.
*
* @param {Cartesian2} cartesian The cartesian to use.
* @returns {number} The value of the maximum component.
*/
Cartesian2.maximumComponent = function (cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
return Math.max(cartesian.x, cartesian.y);
};
/**
* Computes the value of the minimum component for the supplied Cartesian.
*
* @param {Cartesian2} cartesian The cartesian to use.
* @returns {number} The value of the minimum component.
*/
Cartesian2.minimumComponent = function (cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
return Math.min(cartesian.x, cartesian.y);
};
/**
* Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
*
* @param {Cartesian2} first A cartesian to compare.
* @param {Cartesian2} second A cartesian to compare.
* @param {Cartesian2} result The object into which to store the result.
* @returns {Cartesian2} A cartesian with the minimum components.
*/
Cartesian2.minimumByComponent = function (first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("first", first);
Check.typeOf.object("second", second);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = Math.min(first.x, second.x);
result.y = Math.min(first.y, second.y);
return result;
};
/**
* Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
*
* @param {Cartesian2} first A cartesian to compare.
* @param {Cartesian2} second A cartesian to compare.
* @param {Cartesian2} result The object into which to store the result.
* @returns {Cartesian2} A cartesian with the maximum components.
*/
Cartesian2.maximumByComponent = function (first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("first", first);
Check.typeOf.object("second", second);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = Math.max(first.x, second.x);
result.y = Math.max(first.y, second.y);
return result;
};
/**
* Constrain a value to lie between two values.
*
* @param {Cartesian2} value The value to clamp.
* @param {Cartesian2} min The minimum bound.
* @param {Cartesian2} max The maximum bound.
* @param {Cartesian2} result The object into which to store the result.
* @returns {Cartesian2} The clamped value such that min <= result <= max.
*/
Cartesian2.clamp = function (value, min, max, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.typeOf.object("min", min);
Check.typeOf.object("max", max);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const x = CesiumMath.clamp(value.x, min.x, max.x);
const y = CesiumMath.clamp(value.y, min.y, max.y);
result.x = x;
result.y = y;
return result;
};
/**
* Computes the provided Cartesian's squared magnitude.
*
* @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed.
* @returns {number} The squared magnitude.
*/
Cartesian2.magnitudeSquared = function (cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
return cartesian.x * cartesian.x + cartesian.y * cartesian.y;
};
/**
* Computes the Cartesian's magnitude (length).
*
* @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed.
* @returns {number} The magnitude.
*/
Cartesian2.magnitude = function (cartesian) {
return Math.sqrt(Cartesian2.magnitudeSquared(cartesian));
};
const distanceScratch = new Cartesian2();
/**
* Computes the distance between two points.
*
* @param {Cartesian2} left The first point to compute the distance from.
* @param {Cartesian2} right The second point to compute the distance to.
* @returns {number} The distance between two points.
*
* @example
* // Returns 1.0
* const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0));
*/
Cartesian2.distance = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
Cartesian2.subtract(left, right, distanceScratch);
return Cartesian2.magnitude(distanceScratch);
};
/**
* Computes the squared distance between two points. Comparing squared distances
* using this function is more efficient than comparing distances using {@link Cartesian2#distance}.
*
* @param {Cartesian2} left The first point to compute the distance from.
* @param {Cartesian2} right The second point to compute the distance to.
* @returns {number} The distance between two points.
*
* @example
* // Returns 4.0, not 2.0
* const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0));
*/
Cartesian2.distanceSquared = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
Cartesian2.subtract(left, right, distanceScratch);
return Cartesian2.magnitudeSquared(distanceScratch);
};
/**
* Computes the normalized form of the supplied Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian to be normalized.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.normalize = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const magnitude = Cartesian2.magnitude(cartesian);
result.x = cartesian.x / magnitude;
result.y = cartesian.y / magnitude;
//>>includeStart('debug', pragmas.debug);
if (isNaN(result.x) || isNaN(result.y)) {
throw new DeveloperError("normalized result is not a number");
}
//>>includeEnd('debug');
return result;
};
/**
* Computes the dot (scalar) product of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @returns {number} The dot product.
*/
Cartesian2.dot = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
return left.x * right.x + left.y * right.y;
};
/**
* Computes the magnitude of the cross product that would result from implicitly setting the Z coordinate of the input vectors to 0
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @returns {number} The cross product.
*/
Cartesian2.cross = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
return left.x * right.y - left.y * right.x;
};
/**
* Computes the componentwise product of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.multiplyComponents = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x * right.x;
result.y = left.y * right.y;
return result;
};
/**
* Computes the componentwise quotient of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.divideComponents = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x / right.x;
result.y = left.y / right.y;
return result;
};
/**
* Computes the componentwise sum of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.add = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x + right.x;
result.y = left.y + right.y;
return result;
};
/**
* Computes the componentwise difference of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.subtract = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x - right.x;
result.y = left.y - right.y;
return result;
};
/**
* Multiplies the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian2} cartesian The Cartesian to be scaled.
* @param {number} scalar The scalar to multiply with.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.multiplyByScalar = function (cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.number("scalar", scalar);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = cartesian.x * scalar;
result.y = cartesian.y * scalar;
return result;
};
/**
* Divides the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian2} cartesian The Cartesian to be divided.
* @param {number} scalar The scalar to divide by.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.divideByScalar = function (cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.number("scalar", scalar);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = cartesian.x / scalar;
result.y = cartesian.y / scalar;
return result;
};
/**
* Negates the provided Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian to be negated.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.negate = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = -cartesian.x;
result.y = -cartesian.y;
return result;
};
/**
* Computes the absolute value of the provided Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.abs = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = Math.abs(cartesian.x);
result.y = Math.abs(cartesian.y);
return result;
};
const lerpScratch = new Cartesian2();
/**
* Computes the linear interpolation or extrapolation at t using the provided cartesians.
*
* @param {Cartesian2} start The value corresponding to t at 0.0.
* @param {Cartesian2} end The value corresponding to t at 1.0.
* @param {number} t The point along t at which to interpolate.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.lerp = function (start, end, t, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("start", start);
Check.typeOf.object("end", end);
Check.typeOf.number("t", t);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
Cartesian2.multiplyByScalar(end, t, lerpScratch);
result = Cartesian2.multiplyByScalar(start, 1.0 - t, result);
return Cartesian2.add(lerpScratch, result, result);
};
const angleBetweenScratch = new Cartesian2();
const angleBetweenScratch2 = new Cartesian2();
/**
* Returns the angle, in radians, between the provided Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @returns {number} The angle between the Cartesians.
*/
Cartesian2.angleBetween = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
Cartesian2.normalize(left, angleBetweenScratch);
Cartesian2.normalize(right, angleBetweenScratch2);
return CesiumMath.acosClamped(
Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2),
);
};
const mostOrthogonalAxisScratch = new Cartesian2();
/**
* Returns the axis that is most orthogonal to the provided Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The most orthogonal axis.
*/
Cartesian2.mostOrthogonalAxis = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch);
Cartesian2.abs(f, f);
if (f.x <= f.y) {
result = Cartesian2.clone(Cartesian2.UNIT_X, result);
} else {
result = Cartesian2.clone(Cartesian2.UNIT_Y, result);
}
return result;
};
/**
* Compares the provided Cartesians componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Cartesian2} [left] The first Cartesian.
* @param {Cartesian2} [right] The second Cartesian.
* @returns {boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
Cartesian2.equals = function (left, right) {
return (
left === right ||
(defined(left) &&
defined(right) &&
left.x === right.x &&
left.y === right.y)
);
};
/**
* @private
*/
Cartesian2.equalsArray = function (cartesian, array, offset) {
return cartesian.x === array[offset] && cartesian.y === array[offset + 1];
};
/**
* Compares the provided Cartesians componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {Cartesian2} [left] The first Cartesian.
* @param {Cartesian2} [right] The second Cartesian.
* @param {number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
* @param {number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
*/
Cartesian2.equalsEpsilon = function (
left,
right,
relativeEpsilon,
absoluteEpsilon,
) {
return (
left === right ||
(defined(left) &&
defined(right) &&
CesiumMath.equalsEpsilon(
left.x,
right.x,
relativeEpsilon,
absoluteEpsilon,
) &&
CesiumMath.equalsEpsilon(
left.y,
right.y,
relativeEpsilon,
absoluteEpsilon,
))
);
};
/**
* An immutable Cartesian2 instance initialized to (0.0, 0.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0));
/**
* An immutable Cartesian2 instance initialized to (1.0, 1.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.ONE = Object.freeze(new Cartesian2(1.0, 1.0));
/**
* An immutable Cartesian2 instance initialized to (1.0, 0.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0));
/**
* An immutable Cartesian2 instance initialized to (0.0, 1.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0));
/**
* Duplicates this Cartesian2 instance.
*
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.prototype.clone = function (result) {
return Cartesian2.clone(this, result);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Cartesian2} [right] The right hand side Cartesian.
* @returns {boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
Cartesian2.prototype.equals = function (right) {
return Cartesian2.equals(this, right);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {Cartesian2} [right] The right hand side Cartesian.
* @param {number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
* @param {number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
*/
Cartesian2.prototype.equalsEpsilon = function (
right,
relativeEpsilon,
absoluteEpsilon,
) {
return Cartesian2.equalsEpsilon(
this,
right,
relativeEpsilon,
absoluteEpsilon,
);
};
/**
* Creates a string representing this Cartesian in the format '(x, y)'.
*
* @returns {string} A string representing the provided Cartesian in the format '(x, y)'.
*/
Cartesian2.prototype.toString = function () {
return `(${this.x}, ${this.y})`;
};
export default Cartesian2;
|