Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | 1x 1x 1x 1x 1x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 2632x 1x 1x 1x 1x 1x 47x 47x 47x 47x 47x 47x 47x 47x 8392x 8392x 8392x 8392x 8392x 8392x 8392x 8392x 8392x 3168x 3168x 3168x 3168x 3168x 8392x 8392x 8392x 47x 1x 1x 1x 1x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 75x 37x 37x 37x 75x 53x 53x 53x 75x 75x 658x 658x 658x 314x 314x 314x 314x 314x 3822x 3822x 3822x 3822x 3822x 314x 314x 314x 658x 464x 464x 464x 464x 464x 464x 658x 75x 583x 583x 583x 583x 277x 277x 277x 277x 277x 3194x 3194x 3194x 3194x 3194x 277x 277x 277x 583x 411x 411x 411x 411x 411x 411x 75x 75x 75x 75x 37x 37x 37x 37x 37x 75x 53x 53x 53x 53x 75x | import Cartesian3 from "./Cartesian3.js";
import CesiumMath from "./Math.js";
import Matrix3 from "./Matrix3.js";
import Quaternion from "./Quaternion.js";
const EllipseGeometryLibrary = {};
const rotAxis = new Cartesian3();
const tempVec = new Cartesian3();
const unitQuat = new Quaternion();
const rotMtx = new Matrix3();
function pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
result,
) {
const azimuth = theta + rotation;
Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);
Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);
Cartesian3.add(rotAxis, tempVec, rotAxis);
let cosThetaSquared = Math.cos(theta);
cosThetaSquared = cosThetaSquared * cosThetaSquared;
let sinThetaSquared = Math.sin(theta);
sinThetaSquared = sinThetaSquared * sinThetaSquared;
const radius =
ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);
const angle = radius / mag;
// Create the quaternion to rotate the position vector to the boundary of the ellipse.
Quaternion.fromAxisAngle(rotAxis, angle, unitQuat);
Matrix3.fromQuaternion(unitQuat, rotMtx);
Matrix3.multiplyByVector(rotMtx, unitPos, result);
Cartesian3.normalize(result, result);
Cartesian3.multiplyByScalar(result, mag, result);
return result;
}
const scratchCartesian1 = new Cartesian3();
const scratchCartesian2 = new Cartesian3();
const scratchCartesian3 = new Cartesian3();
const scratchNormal = new Cartesian3();
/**
* Returns the positions raised to the given heights
* @private
*/
EllipseGeometryLibrary.raisePositionsToHeight = function (
positions,
options,
extrude,
) {
const ellipsoid = options.ellipsoid;
const height = options.height;
const extrudedHeight = options.extrudedHeight;
const size = extrude ? (positions.length / 3) * 2 : positions.length / 3;
const finalPositions = new Float64Array(size * 3);
const length = positions.length;
const bottomOffset = extrude ? length : 0;
for (let i = 0; i < length; i += 3) {
const i1 = i + 1;
const i2 = i + 2;
const position = Cartesian3.fromArray(positions, i, scratchCartesian1);
ellipsoid.scaleToGeodeticSurface(position, position);
const extrudedPosition = Cartesian3.clone(position, scratchCartesian2);
const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
const scaledNormal = Cartesian3.multiplyByScalar(
normal,
height,
scratchCartesian3,
);
Cartesian3.add(position, scaledNormal, position);
if (extrude) {
Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);
Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);
finalPositions[i + bottomOffset] = extrudedPosition.x;
finalPositions[i1 + bottomOffset] = extrudedPosition.y;
finalPositions[i2 + bottomOffset] = extrudedPosition.z;
}
finalPositions[i] = position.x;
finalPositions[i1] = position.y;
finalPositions[i2] = position.z;
}
return finalPositions;
};
const unitPosScratch = new Cartesian3();
const eastVecScratch = new Cartesian3();
const northVecScratch = new Cartesian3();
/**
* Returns an array of positions that make up the ellipse.
* @private
*/
EllipseGeometryLibrary.computeEllipsePositions = function (
options,
addFillPositions,
addEdgePositions,
) {
const semiMinorAxis = options.semiMinorAxis;
const semiMajorAxis = options.semiMajorAxis;
const rotation = options.rotation;
const center = options.center;
// Computing the arc-length of the ellipse is too expensive to be practical. Estimating it using the
// arc length of the sphere is too inaccurate and creates sharp edges when either the semi-major or
// semi-minor axis is much bigger than the other. Instead, scale the angle delta to make
// the distance along the ellipse boundary more closely match the granularity.
const granularity = options.granularity * 8.0;
const aSqr = semiMinorAxis * semiMinorAxis;
const bSqr = semiMajorAxis * semiMajorAxis;
const ab = semiMajorAxis * semiMinorAxis;
const mag = Cartesian3.magnitude(center);
const unitPos = Cartesian3.normalize(center, unitPosScratch);
let eastVec = Cartesian3.cross(Cartesian3.UNIT_Z, center, eastVecScratch);
eastVec = Cartesian3.normalize(eastVec, eastVec);
const northVec = Cartesian3.cross(unitPos, eastVec, northVecScratch);
// The number of points in the first quadrant
let numPts = 1 + Math.ceil(CesiumMath.PI_OVER_TWO / granularity);
const deltaTheta = CesiumMath.PI_OVER_TWO / (numPts - 1);
let theta = CesiumMath.PI_OVER_TWO - numPts * deltaTheta;
Eif (theta < 0.0) {
numPts -= Math.ceil(Math.abs(theta) / deltaTheta);
}
// If the number of points were three, the ellipse
// would be tessellated like below:
//
// *---*
// / | \ | \
// *---*---*---*
// / | \ | \ | \ | \
// / .*---*---*---*. \
// * ` | \ | \ | \ | `*
// \`.*---*---*---*.`/
// \ | \ | \ | \ | /
// *---*---*---*
// \ | \ | /
// *---*
// The first and last column have one position and fan to connect to the adjacent column.
// Each other vertical column contains an even number of positions.
const size = 2 * (numPts * (numPts + 2));
const positions = addFillPositions ? new Array(size * 3) : undefined;
let positionIndex = 0;
let position = scratchCartesian1;
let reflectedPosition = scratchCartesian2;
const outerPositionsLength = numPts * 4 * 3;
let outerRightIndex = outerPositionsLength - 1;
let outerLeftIndex = 0;
const outerPositions = addEdgePositions
? new Array(outerPositionsLength)
: undefined;
let i;
let j;
let numInterior;
let t;
let interiorPosition;
// Compute points in the 'eastern' half of the ellipse
theta = CesiumMath.PI_OVER_TWO;
position = pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position,
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
}
theta = CesiumMath.PI_OVER_TWO - deltaTheta;
for (i = 1; i < numPts + 1; ++i) {
position = pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position,
);
reflectedPosition = pointOnEllipsoid(
Math.PI - theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
reflectedPosition,
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
numInterior = 2 * i + 2;
for (j = 1; j < numInterior - 1; ++j) {
t = j / (numInterior - 1);
interiorPosition = Cartesian3.lerp(
position,
reflectedPosition,
t,
scratchCartesian3,
);
positions[positionIndex++] = interiorPosition.x;
positions[positionIndex++] = interiorPosition.y;
positions[positionIndex++] = interiorPosition.z;
}
positions[positionIndex++] = reflectedPosition.x;
positions[positionIndex++] = reflectedPosition.y;
positions[positionIndex++] = reflectedPosition.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
outerPositions[outerLeftIndex++] = reflectedPosition.x;
outerPositions[outerLeftIndex++] = reflectedPosition.y;
outerPositions[outerLeftIndex++] = reflectedPosition.z;
}
theta = CesiumMath.PI_OVER_TWO - (i + 1) * deltaTheta;
}
// Compute points in the 'western' half of the ellipse
for (i = numPts; i > 1; --i) {
theta = CesiumMath.PI_OVER_TWO - (i - 1) * deltaTheta;
position = pointOnEllipsoid(
-theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position,
);
reflectedPosition = pointOnEllipsoid(
theta + Math.PI,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
reflectedPosition,
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
numInterior = 2 * (i - 1) + 2;
for (j = 1; j < numInterior - 1; ++j) {
t = j / (numInterior - 1);
interiorPosition = Cartesian3.lerp(
position,
reflectedPosition,
t,
scratchCartesian3,
);
positions[positionIndex++] = interiorPosition.x;
positions[positionIndex++] = interiorPosition.y;
positions[positionIndex++] = interiorPosition.z;
}
positions[positionIndex++] = reflectedPosition.x;
positions[positionIndex++] = reflectedPosition.y;
positions[positionIndex++] = reflectedPosition.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
outerPositions[outerLeftIndex++] = reflectedPosition.x;
outerPositions[outerLeftIndex++] = reflectedPosition.y;
outerPositions[outerLeftIndex++] = reflectedPosition.z;
}
}
theta = CesiumMath.PI_OVER_TWO;
position = pointOnEllipsoid(
-theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position,
);
const r = {};
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
r.positions = positions;
r.numPts = numPts;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
r.outerPositions = outerPositions;
}
return r;
};
export default EllipseGeometryLibrary;
|