All files / engine/Source/Core EllipsoidGeodesic.js

100% Statements 166/166
100% Branches 12/12
100% Functions 15/15
100% Lines 166/166

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524                5655x 5655x 5655x 5655x   5655x 5655x   5655x   5655x 5655x   5655x   5655x 5655x   5655x 5655x   5655x 5655x 5655x 5655x     5655x         5655x 5655x 5655x     5655x           5655x   5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x 5655x       12218x                             12218x   12218x                                             5655x 5655x   5655x 5655x   5655x 5655x 5655x 5655x   5655x 5655x 5655x 5655x   5655x 5655x   5655x 5655x               5655x 6267x 6267x   6267x 6267x     6267x   6267x       6267x 2x 2x   6265x 6265x     6267x   6267x   6267x 349x     6267x                           5655x   5655x         5655x         5655x   5655x                       5655x   5655x       5655x   5655x 5655x 5655x 5655x     1x 1x   5656x       5656x           5656x                   5655x                   5655x       5655x 5655x 5655x   5655x                           36x 36x 36x 36x   36x 36x 36x 36x 36x   36x 22x       1x                 5415x                         231x     230x                       2x                       2x                         4x     3x                         2x     1x                     1x   5636x 5635x     5634x                   1x       5420x                             1x         5953x     5951x   5951x   5951x 5951x 5951x 5951x 5951x 5951x 5951x   5951x 5951x   5951x 5951x 5951x 5951x   5951x                                                   5951x 5951x     5951x   5951x   5951x 5951x   5951x 5951x   5951x           5951x                     5951x 5945x 5945x 5945x 5945x     6x      
import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import defined from "./defined.js";
import Ellipsoid from "./Ellipsoid.js";
import CesiumMath from "./Math.js";
 
function setConstants(ellipsoidGeodesic) {
  const uSquared = ellipsoidGeodesic._uSquared;
  const a = ellipsoidGeodesic._ellipsoid.maximumRadius;
  const b = ellipsoidGeodesic._ellipsoid.minimumRadius;
  const f = (a - b) / a;
 
  const cosineHeading = Math.cos(ellipsoidGeodesic._startHeading);
  const sineHeading = Math.sin(ellipsoidGeodesic._startHeading);
 
  const tanU = (1 - f) * Math.tan(ellipsoidGeodesic._start.latitude);
 
  const cosineU = 1.0 / Math.sqrt(1.0 + tanU * tanU);
  const sineU = cosineU * tanU;
 
  const sigma = Math.atan2(tanU, cosineHeading);
 
  const sineAlpha = cosineU * sineHeading;
  const sineSquaredAlpha = sineAlpha * sineAlpha;
 
  const cosineSquaredAlpha = 1.0 - sineSquaredAlpha;
  const cosineAlpha = Math.sqrt(cosineSquaredAlpha);
 
  const u2Over4 = uSquared / 4.0;
  const u4Over16 = u2Over4 * u2Over4;
  const u6Over64 = u4Over16 * u2Over4;
  const u8Over256 = u4Over16 * u4Over16;
 
  const a0 =
    1.0 +
    u2Over4 -
    (3.0 * u4Over16) / 4.0 +
    (5.0 * u6Over64) / 4.0 -
    (175.0 * u8Over256) / 64.0;
  const a1 = 1.0 - u2Over4 + (15.0 * u4Over16) / 8.0 - (35.0 * u6Over64) / 8.0;
  const a2 = 1.0 - 3.0 * u2Over4 + (35.0 * u4Over16) / 4.0;
  const a3 = 1.0 - 5.0 * u2Over4;
 
  const distanceRatio =
    a0 * sigma -
    (a1 * Math.sin(2.0 * sigma) * u2Over4) / 2.0 -
    (a2 * Math.sin(4.0 * sigma) * u4Over16) / 16.0 -
    (a3 * Math.sin(6.0 * sigma) * u6Over64) / 48.0 -
    (Math.sin(8.0 * sigma) * 5.0 * u8Over256) / 512;
 
  const constants = ellipsoidGeodesic._constants;
 
  constants.a = a;
  constants.b = b;
  constants.f = f;
  constants.cosineHeading = cosineHeading;
  constants.sineHeading = sineHeading;
  constants.tanU = tanU;
  constants.cosineU = cosineU;
  constants.sineU = sineU;
  constants.sigma = sigma;
  constants.sineAlpha = sineAlpha;
  constants.sineSquaredAlpha = sineSquaredAlpha;
  constants.cosineSquaredAlpha = cosineSquaredAlpha;
  constants.cosineAlpha = cosineAlpha;
  constants.u2Over4 = u2Over4;
  constants.u4Over16 = u4Over16;
  constants.u6Over64 = u6Over64;
  constants.u8Over256 = u8Over256;
  constants.a0 = a0;
  constants.a1 = a1;
  constants.a2 = a2;
  constants.a3 = a3;
  constants.distanceRatio = distanceRatio;
}
 
function computeC(f, cosineSquaredAlpha) {
  return (
    (f * cosineSquaredAlpha * (4.0 + f * (4.0 - 3.0 * cosineSquaredAlpha))) /
    16.0
  );
}
 
function computeDeltaLambda(
  f,
  sineAlpha,
  cosineSquaredAlpha,
  sigma,
  sineSigma,
  cosineSigma,
  cosineTwiceSigmaMidpoint,
) {
  const C = computeC(f, cosineSquaredAlpha);
 
  return (
    (1.0 - C) *
    f *
    sineAlpha *
    (sigma +
      C *
        sineSigma *
        (cosineTwiceSigmaMidpoint +
          C *
            cosineSigma *
            (2.0 * cosineTwiceSigmaMidpoint * cosineTwiceSigmaMidpoint - 1.0)))
  );
}
 
function vincentyInverseFormula(
  ellipsoidGeodesic,
  major,
  minor,
  firstLongitude,
  firstLatitude,
  secondLongitude,
  secondLatitude,
) {
  const eff = (major - minor) / major;
  const l = secondLongitude - firstLongitude;
 
  const u1 = Math.atan((1 - eff) * Math.tan(firstLatitude));
  const u2 = Math.atan((1 - eff) * Math.tan(secondLatitude));
 
  const cosineU1 = Math.cos(u1);
  const sineU1 = Math.sin(u1);
  const cosineU2 = Math.cos(u2);
  const sineU2 = Math.sin(u2);
 
  const cc = cosineU1 * cosineU2;
  const cs = cosineU1 * sineU2;
  const ss = sineU1 * sineU2;
  const sc = sineU1 * cosineU2;
 
  let lambda = l;
  let lambdaDot = CesiumMath.TWO_PI;
 
  let cosineLambda = Math.cos(lambda);
  let sineLambda = Math.sin(lambda);
 
  let sigma;
  let cosineSigma;
  let sineSigma;
  let cosineSquaredAlpha;
  let cosineTwiceSigmaMidpoint;
 
  do {
    cosineLambda = Math.cos(lambda);
    sineLambda = Math.sin(lambda);
 
    const temp = cs - sc * cosineLambda;
    sineSigma = Math.sqrt(
      cosineU2 * cosineU2 * sineLambda * sineLambda + temp * temp,
    );
    cosineSigma = ss + cc * cosineLambda;
 
    sigma = Math.atan2(sineSigma, cosineSigma);
 
    let sineAlpha;
 
    if (sineSigma === 0.0) {
      sineAlpha = 0.0;
      cosineSquaredAlpha = 1.0;
    } else {
      sineAlpha = (cc * sineLambda) / sineSigma;
      cosineSquaredAlpha = 1.0 - sineAlpha * sineAlpha;
    }
 
    lambdaDot = lambda;
 
    cosineTwiceSigmaMidpoint = cosineSigma - (2.0 * ss) / cosineSquaredAlpha;
 
    if (!isFinite(cosineTwiceSigmaMidpoint)) {
      cosineTwiceSigmaMidpoint = 0.0;
    }
 
    lambda =
      l +
      computeDeltaLambda(
        eff,
        sineAlpha,
        cosineSquaredAlpha,
        sigma,
        sineSigma,
        cosineSigma,
        cosineTwiceSigmaMidpoint,
      );
  } while (Math.abs(lambda - lambdaDot) > CesiumMath.EPSILON12);
 
  const uSquared =
    (cosineSquaredAlpha * (major * major - minor * minor)) / (minor * minor);
  const A =
    1.0 +
    (uSquared *
      (4096.0 + uSquared * (uSquared * (320.0 - 175.0 * uSquared) - 768.0))) /
      16384.0;
  const B =
    (uSquared *
      (256.0 + uSquared * (uSquared * (74.0 - 47.0 * uSquared) - 128.0))) /
    1024.0;
 
  const cosineSquaredTwiceSigmaMidpoint =
    cosineTwiceSigmaMidpoint * cosineTwiceSigmaMidpoint;
  const deltaSigma =
    B *
    sineSigma *
    (cosineTwiceSigmaMidpoint +
      (B *
        (cosineSigma * (2.0 * cosineSquaredTwiceSigmaMidpoint - 1.0) -
          (B *
            cosineTwiceSigmaMidpoint *
            (4.0 * sineSigma * sineSigma - 3.0) *
            (4.0 * cosineSquaredTwiceSigmaMidpoint - 3.0)) /
            6.0)) /
        4.0);
 
  const distance = minor * A * (sigma - deltaSigma);
 
  const startHeading = Math.atan2(
    cosineU2 * sineLambda,
    cs - sc * cosineLambda,
  );
  const endHeading = Math.atan2(cosineU1 * sineLambda, cs * cosineLambda - sc);
 
  ellipsoidGeodesic._distance = distance;
  ellipsoidGeodesic._startHeading = startHeading;
  ellipsoidGeodesic._endHeading = endHeading;
  ellipsoidGeodesic._uSquared = uSquared;
}
 
const scratchCart1 = new Cartesian3();
const scratchCart2 = new Cartesian3();
function computeProperties(ellipsoidGeodesic, start, end, ellipsoid) {
  const firstCartesian = Cartesian3.normalize(
    ellipsoid.cartographicToCartesian(start, scratchCart2),
    scratchCart1,
  );
  const lastCartesian = Cartesian3.normalize(
    ellipsoid.cartographicToCartesian(end, scratchCart2),
    scratchCart2,
  );
 
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.number.greaterThanOrEquals(
    "value",
    Math.abs(
      Math.abs(Cartesian3.angleBetween(firstCartesian, lastCartesian)) -
        Math.PI,
    ),
    0.0125,
  );
  //>>includeEnd('debug');
 
  vincentyInverseFormula(
    ellipsoidGeodesic,
    ellipsoid.maximumRadius,
    ellipsoid.minimumRadius,
    start.longitude,
    start.latitude,
    end.longitude,
    end.latitude,
  );
 
  ellipsoidGeodesic._start = Cartographic.clone(
    start,
    ellipsoidGeodesic._start,
  );
  ellipsoidGeodesic._end = Cartographic.clone(end, ellipsoidGeodesic._end);
  ellipsoidGeodesic._start.height = 0;
  ellipsoidGeodesic._end.height = 0;
 
  setConstants(ellipsoidGeodesic);
}
 
/**
 * Initializes a geodesic on the ellipsoid connecting the two provided planetodetic points.
 *
 * @alias EllipsoidGeodesic
 * @constructor
 *
 * @param {Cartographic} [start] The initial planetodetic point on the path.
 * @param {Cartographic} [end] The final planetodetic point on the path.
 * @param {Ellipsoid} [ellipsoid=Ellipsoid.default] The ellipsoid on which the geodesic lies.
 */
function EllipsoidGeodesic(start, end, ellipsoid) {
  const e = ellipsoid ?? Ellipsoid.default;
  this._ellipsoid = e;
  this._start = new Cartographic();
  this._end = new Cartographic();
 
  this._constants = {};
  this._startHeading = undefined;
  this._endHeading = undefined;
  this._distance = undefined;
  this._uSquared = undefined;
 
  if (defined(start) && defined(end)) {
    computeProperties(this, start, end, e);
  }
}
 
Object.defineProperties(EllipsoidGeodesic.prototype, {
  /**
   * Gets the ellipsoid.
   * @memberof EllipsoidGeodesic.prototype
   * @type {Ellipsoid}
   * @readonly
   */
  ellipsoid: {
    get: function () {
      return this._ellipsoid;
    },
  },
 
  /**
   * Gets the surface distance between the start and end point
   * @memberof EllipsoidGeodesic.prototype
   * @type {number}
   * @readonly
   */
  surfaceDistance: {
    get: function () {
      //>>includeStart('debug', pragmas.debug);
      Check.defined("distance", this._distance);
      //>>includeEnd('debug');
 
      return this._distance;
    },
  },
 
  /**
   * Gets the initial planetodetic point on the path.
   * @memberof EllipsoidGeodesic.prototype
   * @type {Cartographic}
   * @readonly
   */
  start: {
    get: function () {
      return this._start;
    },
  },
 
  /**
   * Gets the final planetodetic point on the path.
   * @memberof EllipsoidGeodesic.prototype
   * @type {Cartographic}
   * @readonly
   */
  end: {
    get: function () {
      return this._end;
    },
  },
 
  /**
   * Gets the heading at the initial point.
   * @memberof EllipsoidGeodesic.prototype
   * @type {number}
   * @readonly
   */
  startHeading: {
    get: function () {
      //>>includeStart('debug', pragmas.debug);
      Check.defined("distance", this._distance);
      //>>includeEnd('debug');
 
      return this._startHeading;
    },
  },
 
  /**
   * Gets the heading at the final point.
   * @memberof EllipsoidGeodesic.prototype
   * @type {number}
   * @readonly
   */
  endHeading: {
    get: function () {
      //>>includeStart('debug', pragmas.debug);
      Check.defined("distance", this._distance);
      //>>includeEnd('debug');
 
      return this._endHeading;
    },
  },
});
 
/**
 * Sets the start and end points of the geodesic
 *
 * @param {Cartographic} start The initial planetodetic point on the path.
 * @param {Cartographic} end The final planetodetic point on the path.
 */
EllipsoidGeodesic.prototype.setEndPoints = function (start, end) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("start", start);
  Check.defined("end", end);
  //>>includeEnd('debug');
 
  computeProperties(this, start, end, this._ellipsoid);
};
 
/**
 * Provides the location of a point at the indicated portion along the geodesic.
 *
 * @param {number} fraction The portion of the distance between the initial and final points.
 * @param {Cartographic} [result] The object in which to store the result.
 * @returns {Cartographic} The location of the point along the geodesic.
 */
EllipsoidGeodesic.prototype.interpolateUsingFraction = function (
  fraction,
  result,
) {
  return this.interpolateUsingSurfaceDistance(
    this._distance * fraction,
    result,
  );
};
 
/**
 * Provides the location of a point at the indicated distance along the geodesic.
 *
 * @param {number} distance The distance from the initial point to the point of interest along the geodesic
 * @param {Cartographic} [result] The object in which to store the result.
 * @returns {Cartographic} The location of the point along the geodesic.
 *
 * @exception {DeveloperError} start and end must be set before calling function interpolateUsingSurfaceDistance
 */
EllipsoidGeodesic.prototype.interpolateUsingSurfaceDistance = function (
  distance,
  result,
) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("distance", this._distance);
  //>>includeEnd('debug');
 
  const constants = this._constants;
 
  const s = constants.distanceRatio + distance / constants.b;
 
  const cosine2S = Math.cos(2.0 * s);
  const cosine4S = Math.cos(4.0 * s);
  const cosine6S = Math.cos(6.0 * s);
  const sine2S = Math.sin(2.0 * s);
  const sine4S = Math.sin(4.0 * s);
  const sine6S = Math.sin(6.0 * s);
  const sine8S = Math.sin(8.0 * s);
 
  const s2 = s * s;
  const s3 = s * s2;
 
  const u8Over256 = constants.u8Over256;
  const u2Over4 = constants.u2Over4;
  const u6Over64 = constants.u6Over64;
  const u4Over16 = constants.u4Over16;
  let sigma =
    (2.0 * s3 * u8Over256 * cosine2S) / 3.0 +
    s *
      (1.0 -
        u2Over4 +
        (7.0 * u4Over16) / 4.0 -
        (15.0 * u6Over64) / 4.0 +
        (579.0 * u8Over256) / 64.0 -
        (u4Over16 - (15.0 * u6Over64) / 4.0 + (187.0 * u8Over256) / 16.0) *
          cosine2S -
        ((5.0 * u6Over64) / 4.0 - (115.0 * u8Over256) / 16.0) * cosine4S -
        (29.0 * u8Over256 * cosine6S) / 16.0) +
    (u2Over4 / 2.0 -
      u4Over16 +
      (71.0 * u6Over64) / 32.0 -
      (85.0 * u8Over256) / 16.0) *
      sine2S +
    ((5.0 * u4Over16) / 16.0 -
      (5.0 * u6Over64) / 4.0 +
      (383.0 * u8Over256) / 96.0) *
      sine4S -
    s2 *
      ((u6Over64 - (11.0 * u8Over256) / 2.0) * sine2S +
        (5.0 * u8Over256 * sine4S) / 2.0) +
    ((29.0 * u6Over64) / 96.0 - (29.0 * u8Over256) / 16.0) * sine6S +
    (539.0 * u8Over256 * sine8S) / 1536.0;
 
  const theta = Math.asin(Math.sin(sigma) * constants.cosineAlpha);
  const latitude = Math.atan((constants.a / constants.b) * Math.tan(theta));
 
  // Redefine in terms of relative argument of latitude.
  sigma = sigma - constants.sigma;
 
  const cosineTwiceSigmaMidpoint = Math.cos(2.0 * constants.sigma + sigma);
 
  const sineSigma = Math.sin(sigma);
  const cosineSigma = Math.cos(sigma);
 
  const cc = constants.cosineU * cosineSigma;
  const ss = constants.sineU * sineSigma;
 
  const lambda = Math.atan2(
    sineSigma * constants.sineHeading,
    cc - ss * constants.cosineHeading,
  );
 
  const l =
    lambda -
    computeDeltaLambda(
      constants.f,
      constants.sineAlpha,
      constants.cosineSquaredAlpha,
      sigma,
      sineSigma,
      cosineSigma,
      cosineTwiceSigmaMidpoint,
    );
 
  if (defined(result)) {
    result.longitude = this._start.longitude + l;
    result.latitude = latitude;
    result.height = 0.0;
    return result;
  }
 
  return new Cartographic(this._start.longitude + l, latitude, 0.0);
};
export default EllipsoidGeodesic;