All files / engine/Source/Core EllipsoidGeometry.js

100% Statements 306/306
92.75% Branches 128/138
100% Functions 5/5
100% Lines 306/306

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651                                  1x 1x 1x 1x 1x 1x   1x 1x                                                               135x   135x 135x 135x 135x 135x 135x 135x 135x 135x     135x 2x       133x 2x           131x 131x 131x 131x 131x 131x 131x 131x 131x 131x 131x             1x                       1x   11x 1x   10x 2x       8x   8x 8x   8x 8x   8x 8x   8x 8x 8x 8x 8x 8x 8x   8x     1x 1x 1x 1x                                         1x   8x 2x       6x   6x 6x   6x 6x   6x         6x   6x 6x 6x 6x 6x 6x 6x   6x 3x 3x 3x 3x 3x 3x 3x   3x     3x 3x 3x 3x 3x 3x 3x 3x 3x 3x     3x                 1x 114x 114x 7x     107x 107x 6x     101x 101x 101x 101x 101x       101x 101x   101x       101x       101x 1x   101x 1x         101x       101x 101x 101x 16163x       101x 101x 16196x         101x 101x 101x       101x 101x   101x     101x 101x 101x 101x 7x 7x 3x 3x   7x 2x 2x   7x 3x 3x   4x       101x 101x 101x 101x     101x   101x         101x   101x     101x     101x     101x     101x 101x 101x 16365x 16365x       101x 101x 101x 16398x 16398x       101x 16365x 3777471x 3777471x 3777471x         101x 101x 7x 189x 11181x 11181x 11181x       11181x 11181x 10387x   11181x           101x     101x 16062x 16062x   16062x 3680091x 3680091x 3680091x   3680091x 3680091x 3680091x         101x 7x 7x 168x 168x   168x 10011x 10011x 10011x   10011x 10011x 10011x             101x 7x   3x 3x 68x 68x 68x   68x 68x 68x       7x   2x 2x 2x 66x 66x 66x   66x 66x 66x           101x 3x 9x 9x 9x 9x 9x   9x 9x 9x     3x 9x 9x 9x 9x 9x   9x 9x 9x       101x   101x 101x             101x 101x 101x 101x 101x     101x 101x   101x           14x 49204x 49204x 49204x 49204x 10335x     49204x 49204x 49204x   49204x     49204x 49204x 49204x 49204x     49204x 8787x     8787x   8787x 2077x   8787x         182x   8605x   8787x 8787x   8787x 8787x 8787x 8787x     8787x 8787x 8787x   8787x 8787x 8787x         14x 14x             14x 14x             14x 6x             14x 6x               101x 2x   2x     2x 2x             101x                                 1x 2x 1x             2x      
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PrimitiveType from "./PrimitiveType.js";
import VertexFormat from "./VertexFormat.js";
 
const scratchPosition = new Cartesian3();
const scratchNormal = new Cartesian3();
const scratchTangent = new Cartesian3();
const scratchBitangent = new Cartesian3();
const scratchNormalST = new Cartesian3();
const defaultRadii = new Cartesian3(1.0, 1.0, 1.0);
 
const cos = Math.cos;
const sin = Math.sin;
 
/**
 * A description of an ellipsoid centered at the origin.
 *
 * @alias EllipsoidGeometry
 * @constructor
 *
 * @param {object} [options] Object with the following properties:
 * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
 * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
 * @param {number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
 * @param {number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
 * @param {number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
 * @param {number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
 * @param {number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks.
 * @param {number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices.
 * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
 *
 * @exception {DeveloperError} options.slicePartitions cannot be less than three.
 * @exception {DeveloperError} options.stackPartitions cannot be less than three.
 *
 * @see EllipsoidGeometry#createGeometry
 *
 * @example
 * const ellipsoid = new Cesium.EllipsoidGeometry({
 *   vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
 *   radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0)
 * });
 * const geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid);
 */
function EllipsoidGeometry(options) {
  options = options ?? Frozen.EMPTY_OBJECT;
 
  const radii = options.radii ?? defaultRadii;
  const innerRadii = options.innerRadii ?? radii;
  const minimumClock = options.minimumClock ?? 0.0;
  const maximumClock = options.maximumClock ?? CesiumMath.TWO_PI;
  const minimumCone = options.minimumCone ?? 0.0;
  const maximumCone = options.maximumCone ?? CesiumMath.PI;
  const stackPartitions = Math.round(options.stackPartitions ?? 64);
  const slicePartitions = Math.round(options.slicePartitions ?? 64);
  const vertexFormat = options.vertexFormat ?? VertexFormat.DEFAULT;
 
  //>>includeStart('debug', pragmas.debug);
  if (slicePartitions < 3) {
    throw new DeveloperError(
      "options.slicePartitions cannot be less than three.",
    );
  }
  if (stackPartitions < 3) {
    throw new DeveloperError(
      "options.stackPartitions cannot be less than three.",
    );
  }
  //>>includeEnd('debug');
 
  this._radii = Cartesian3.clone(radii);
  this._innerRadii = Cartesian3.clone(innerRadii);
  this._minimumClock = minimumClock;
  this._maximumClock = maximumClock;
  this._minimumCone = minimumCone;
  this._maximumCone = maximumCone;
  this._stackPartitions = stackPartitions;
  this._slicePartitions = slicePartitions;
  this._vertexFormat = VertexFormat.clone(vertexFormat);
  this._offsetAttribute = options.offsetAttribute;
  this._workerName = "createEllipsoidGeometry";
}
 
/**
 * The number of elements used to pack the object into an array.
 * @type {number}
 */
EllipsoidGeometry.packedLength =
  2 * Cartesian3.packedLength + VertexFormat.packedLength + 7;
 
/**
 * Stores the provided instance into the provided array.
 *
 * @param {EllipsoidGeometry} value The value to pack.
 * @param {number[]} array The array to pack into.
 * @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
 *
 * @returns {number[]} The array that was packed into
 */
EllipsoidGeometry.pack = function (value, array, startingIndex) {
  //>>includeStart('debug', pragmas.debug);
  if (!defined(value)) {
    throw new DeveloperError("value is required");
  }
  if (!defined(array)) {
    throw new DeveloperError("array is required");
  }
  //>>includeEnd('debug');
 
  startingIndex = startingIndex ?? 0;
 
  Cartesian3.pack(value._radii, array, startingIndex);
  startingIndex += Cartesian3.packedLength;
 
  Cartesian3.pack(value._innerRadii, array, startingIndex);
  startingIndex += Cartesian3.packedLength;
 
  VertexFormat.pack(value._vertexFormat, array, startingIndex);
  startingIndex += VertexFormat.packedLength;
 
  array[startingIndex++] = value._minimumClock;
  array[startingIndex++] = value._maximumClock;
  array[startingIndex++] = value._minimumCone;
  array[startingIndex++] = value._maximumCone;
  array[startingIndex++] = value._stackPartitions;
  array[startingIndex++] = value._slicePartitions;
  array[startingIndex] = value._offsetAttribute ?? -1;
 
  return array;
};
 
const scratchRadii = new Cartesian3();
const scratchInnerRadii = new Cartesian3();
const scratchVertexFormat = new VertexFormat();
const scratchOptions = {
  radii: scratchRadii,
  innerRadii: scratchInnerRadii,
  vertexFormat: scratchVertexFormat,
  minimumClock: undefined,
  maximumClock: undefined,
  minimumCone: undefined,
  maximumCone: undefined,
  stackPartitions: undefined,
  slicePartitions: undefined,
  offsetAttribute: undefined,
};
 
/**
 * Retrieves an instance from a packed array.
 *
 * @param {number[]} array The packed array.
 * @param {number} [startingIndex=0] The starting index of the element to be unpacked.
 * @param {EllipsoidGeometry} [result] The object into which to store the result.
 * @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided.
 */
EllipsoidGeometry.unpack = function (array, startingIndex, result) {
  //>>includeStart('debug', pragmas.debug);
  if (!defined(array)) {
    throw new DeveloperError("array is required");
  }
  //>>includeEnd('debug');
 
  startingIndex = startingIndex ?? 0;
 
  const radii = Cartesian3.unpack(array, startingIndex, scratchRadii);
  startingIndex += Cartesian3.packedLength;
 
  const innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
  startingIndex += Cartesian3.packedLength;
 
  const vertexFormat = VertexFormat.unpack(
    array,
    startingIndex,
    scratchVertexFormat,
  );
  startingIndex += VertexFormat.packedLength;
 
  const minimumClock = array[startingIndex++];
  const maximumClock = array[startingIndex++];
  const minimumCone = array[startingIndex++];
  const maximumCone = array[startingIndex++];
  const stackPartitions = array[startingIndex++];
  const slicePartitions = array[startingIndex++];
  const offsetAttribute = array[startingIndex];
 
  if (!defined(result)) {
    scratchOptions.minimumClock = minimumClock;
    scratchOptions.maximumClock = maximumClock;
    scratchOptions.minimumCone = minimumCone;
    scratchOptions.maximumCone = maximumCone;
    scratchOptions.stackPartitions = stackPartitions;
    scratchOptions.slicePartitions = slicePartitions;
    scratchOptions.offsetAttribute =
      offsetAttribute === -1 ? undefined : offsetAttribute;
    return new EllipsoidGeometry(scratchOptions);
  }
 
  result._radii = Cartesian3.clone(radii, result._radii);
  result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);
  result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
  result._minimumClock = minimumClock;
  result._maximumClock = maximumClock;
  result._minimumCone = minimumCone;
  result._maximumCone = maximumCone;
  result._stackPartitions = stackPartitions;
  result._slicePartitions = slicePartitions;
  result._offsetAttribute =
    offsetAttribute === -1 ? undefined : offsetAttribute;
 
  return result;
};
 
/**
 * Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere.
 *
 * @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid.
 * @returns {Geometry|undefined} The computed vertices and indices.
 */
EllipsoidGeometry.createGeometry = function (ellipsoidGeometry) {
  const radii = ellipsoidGeometry._radii;
  if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
    return;
  }
 
  const innerRadii = ellipsoidGeometry._innerRadii;
  if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
    return;
  }
 
  const minimumClock = ellipsoidGeometry._minimumClock;
  const maximumClock = ellipsoidGeometry._maximumClock;
  const minimumCone = ellipsoidGeometry._minimumCone;
  const maximumCone = ellipsoidGeometry._maximumCone;
  const vertexFormat = ellipsoidGeometry._vertexFormat;
 
  // Add an extra slice and stack so that the number of partitions is the
  // number of surfaces rather than the number of joints
  let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
  let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
 
  slicePartitions = Math.round(
    (slicePartitions * Math.abs(maximumClock - minimumClock)) /
      CesiumMath.TWO_PI,
  );
  stackPartitions = Math.round(
    (stackPartitions * Math.abs(maximumCone - minimumCone)) / CesiumMath.PI,
  );
 
  if (slicePartitions < 2) {
    slicePartitions = 2;
  }
  if (stackPartitions < 2) {
    stackPartitions = 2;
  }
 
  let i;
  let j;
  let index = 0;
 
  // Create arrays for theta and phi. Duplicate first and last angle to
  // allow different normals at the intersections.
  const phis = [minimumCone];
  const thetas = [minimumClock];
  for (i = 0; i < stackPartitions; i++) {
    phis.push(
      minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1),
    );
  }
  phis.push(maximumCone);
  for (j = 0; j < slicePartitions; j++) {
    thetas.push(
      minimumClock +
        (j * (maximumClock - minimumClock)) / (slicePartitions - 1),
    );
  }
  thetas.push(maximumClock);
  const numPhis = phis.length;
  const numThetas = thetas.length;
 
  // Allow for extra indices if there is an inner surface and if we need
  // to close the sides if the clock range is not a full circle
  let extraIndices = 0;
  let vertexMultiplier = 1.0;
  const hasInnerSurface =
    innerRadii.x !== radii.x ||
    innerRadii.y !== radii.y ||
    innerRadii.z !== radii.z;
  let isTopOpen = false;
  let isBotOpen = false;
  let isClockOpen = false;
  if (hasInnerSurface) {
    vertexMultiplier = 2.0;
    if (minimumCone > 0.0) {
      isTopOpen = true;
      extraIndices += slicePartitions - 1;
    }
    if (maximumCone < Math.PI) {
      isBotOpen = true;
      extraIndices += slicePartitions - 1;
    }
    if ((maximumClock - minimumClock) % CesiumMath.TWO_PI) {
      isClockOpen = true;
      extraIndices += (stackPartitions - 1) * 2 + 1;
    } else {
      extraIndices += 1;
    }
  }
 
  const vertexCount = numThetas * numPhis * vertexMultiplier;
  const positions = new Float64Array(vertexCount * 3);
  const isInner = new Array(vertexCount).fill(false);
  const negateNormal = new Array(vertexCount).fill(false);
 
  // Multiply by 6 because there are two triangles per sector
  const indexCount = slicePartitions * stackPartitions * vertexMultiplier;
  const numIndices =
    6 *
    (indexCount +
      extraIndices +
      1 -
      (slicePartitions + stackPartitions) * vertexMultiplier);
  const indices = IndexDatatype.createTypedArray(indexCount, numIndices);
 
  const normals = vertexFormat.normal
    ? new Float32Array(vertexCount * 3)
    : undefined;
  const tangents = vertexFormat.tangent
    ? new Float32Array(vertexCount * 3)
    : undefined;
  const bitangents = vertexFormat.bitangent
    ? new Float32Array(vertexCount * 3)
    : undefined;
  const st = vertexFormat.st ? new Float32Array(vertexCount * 2) : undefined;
 
  // Calculate sin/cos phi
  const sinPhi = new Array(numPhis);
  const cosPhi = new Array(numPhis);
  for (i = 0; i < numPhis; i++) {
    sinPhi[i] = sin(phis[i]);
    cosPhi[i] = cos(phis[i]);
  }
 
  // Calculate sin/cos theta
  const sinTheta = new Array(numThetas);
  const cosTheta = new Array(numThetas);
  for (j = 0; j < numThetas; j++) {
    cosTheta[j] = cos(thetas[j]);
    sinTheta[j] = sin(thetas[j]);
  }
 
  // Create outer surface
  for (i = 0; i < numPhis; i++) {
    for (j = 0; j < numThetas; j++) {
      positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
      positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
      positions[index++] = radii.z * cosPhi[i];
    }
  }
 
  // Create inner surface
  let vertexIndex = vertexCount / 2.0;
  if (hasInnerSurface) {
    for (i = 0; i < numPhis; i++) {
      for (j = 0; j < numThetas; j++) {
        positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
        positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
        positions[index++] = innerRadii.z * cosPhi[i];
 
        // Keep track of which vertices are the inner and which ones
        // need the normal to be negated
        isInner[vertexIndex] = true;
        if (i > 0 && i !== numPhis - 1 && j !== 0 && j !== numThetas - 1) {
          negateNormal[vertexIndex] = true;
        }
        vertexIndex++;
      }
    }
  }
 
  // Create indices for outer surface
  index = 0;
  let topOffset;
  let bottomOffset;
  for (i = 1; i < numPhis - 2; i++) {
    topOffset = i * numThetas;
    bottomOffset = (i + 1) * numThetas;
 
    for (j = 1; j < numThetas - 2; j++) {
      indices[index++] = bottomOffset + j;
      indices[index++] = bottomOffset + j + 1;
      indices[index++] = topOffset + j + 1;
 
      indices[index++] = bottomOffset + j;
      indices[index++] = topOffset + j + 1;
      indices[index++] = topOffset + j;
    }
  }
 
  // Create indices for inner surface
  if (hasInnerSurface) {
    const offset = numPhis * numThetas;
    for (i = 1; i < numPhis - 2; i++) {
      topOffset = offset + i * numThetas;
      bottomOffset = offset + (i + 1) * numThetas;
 
      for (j = 1; j < numThetas - 2; j++) {
        indices[index++] = bottomOffset + j;
        indices[index++] = topOffset + j;
        indices[index++] = topOffset + j + 1;
 
        indices[index++] = bottomOffset + j;
        indices[index++] = topOffset + j + 1;
        indices[index++] = bottomOffset + j + 1;
      }
    }
  }
 
  let outerOffset;
  let innerOffset;
  if (hasInnerSurface) {
    if (isTopOpen) {
      // Connect the top of the inner surface to the top of the outer surface
      innerOffset = numPhis * numThetas;
      for (i = 1; i < numThetas - 2; i++) {
        indices[index++] = i;
        indices[index++] = i + 1;
        indices[index++] = innerOffset + i + 1;
 
        indices[index++] = i;
        indices[index++] = innerOffset + i + 1;
        indices[index++] = innerOffset + i;
      }
    }
 
    if (isBotOpen) {
      // Connect the bottom of the inner surface to the bottom of the outer surface
      outerOffset = numPhis * numThetas - numThetas;
      innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;
      for (i = 1; i < numThetas - 2; i++) {
        indices[index++] = outerOffset + i + 1;
        indices[index++] = outerOffset + i;
        indices[index++] = innerOffset + i;
 
        indices[index++] = outerOffset + i + 1;
        indices[index++] = innerOffset + i;
        indices[index++] = innerOffset + i + 1;
      }
    }
  }
 
  // Connect the edges if clock is not closed
  if (isClockOpen) {
    for (i = 1; i < numPhis - 2; i++) {
      innerOffset = numThetas * numPhis + numThetas * i;
      outerOffset = numThetas * i;
      indices[index++] = innerOffset;
      indices[index++] = outerOffset + numThetas;
      indices[index++] = outerOffset;
 
      indices[index++] = innerOffset;
      indices[index++] = innerOffset + numThetas;
      indices[index++] = outerOffset + numThetas;
    }
 
    for (i = 1; i < numPhis - 2; i++) {
      innerOffset = numThetas * numPhis + numThetas * (i + 1) - 1;
      outerOffset = numThetas * (i + 1) - 1;
      indices[index++] = outerOffset + numThetas;
      indices[index++] = innerOffset;
      indices[index++] = outerOffset;
 
      indices[index++] = outerOffset + numThetas;
      indices[index++] = innerOffset + numThetas;
      indices[index++] = innerOffset;
    }
  }
 
  const attributes = new GeometryAttributes();
 
  Eif (vertexFormat.position) {
    attributes.position = new GeometryAttribute({
      componentDatatype: ComponentDatatype.DOUBLE,
      componentsPerAttribute: 3,
      values: positions,
    });
  }
 
  let stIndex = 0;
  let normalIndex = 0;
  let tangentIndex = 0;
  let bitangentIndex = 0;
  const vertexCountHalf = vertexCount / 2.0;
 
  let ellipsoid;
  const ellipsoidOuter = Ellipsoid.fromCartesian3(radii);
  const ellipsoidInner = Ellipsoid.fromCartesian3(innerRadii);
 
  if (
    vertexFormat.st ||
    vertexFormat.normal ||
    vertexFormat.tangent ||
    vertexFormat.bitangent
  ) {
    for (i = 0; i < vertexCount; i++) {
      ellipsoid = isInner[i] ? ellipsoidInner : ellipsoidOuter;
      const position = Cartesian3.fromArray(positions, i * 3, scratchPosition);
      const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
      if (negateNormal[i]) {
        Cartesian3.negate(normal, normal);
      }
 
      Eif (vertexFormat.st) {
        const normalST = Cartesian2.negate(normal, scratchNormalST);
        st[stIndex++] =
          Math.atan2(normalST.y, normalST.x) / CesiumMath.TWO_PI + 0.5;
        st[stIndex++] = Math.asin(normal.z) / Math.PI + 0.5;
      }
 
      Eif (vertexFormat.normal) {
        normals[normalIndex++] = normal.x;
        normals[normalIndex++] = normal.y;
        normals[normalIndex++] = normal.z;
      }
 
      if (vertexFormat.tangent || vertexFormat.bitangent) {
        const tangent = scratchTangent;
 
        // Use UNIT_X for the poles
        let tangetOffset = 0;
        let unit;
        if (isInner[i]) {
          tangetOffset = vertexCountHalf;
        }
        if (
          !isTopOpen &&
          i >= tangetOffset &&
          i < tangetOffset + numThetas * 2
        ) {
          unit = Cartesian3.UNIT_X;
        } else {
          unit = Cartesian3.UNIT_Z;
        }
        Cartesian3.cross(unit, normal, tangent);
        Cartesian3.normalize(tangent, tangent);
 
        Eif (vertexFormat.tangent) {
          tangents[tangentIndex++] = tangent.x;
          tangents[tangentIndex++] = tangent.y;
          tangents[tangentIndex++] = tangent.z;
        }
 
        Eif (vertexFormat.bitangent) {
          const bitangent = Cartesian3.cross(normal, tangent, scratchBitangent);
          Cartesian3.normalize(bitangent, bitangent);
 
          bitangents[bitangentIndex++] = bitangent.x;
          bitangents[bitangentIndex++] = bitangent.y;
          bitangents[bitangentIndex++] = bitangent.z;
        }
      }
    }
 
    Eif (vertexFormat.st) {
      attributes.st = new GeometryAttribute({
        componentDatatype: ComponentDatatype.FLOAT,
        componentsPerAttribute: 2,
        values: st,
      });
    }
 
    Eif (vertexFormat.normal) {
      attributes.normal = new GeometryAttribute({
        componentDatatype: ComponentDatatype.FLOAT,
        componentsPerAttribute: 3,
        values: normals,
      });
    }
 
    if (vertexFormat.tangent) {
      attributes.tangent = new GeometryAttribute({
        componentDatatype: ComponentDatatype.FLOAT,
        componentsPerAttribute: 3,
        values: tangents,
      });
    }
 
    if (vertexFormat.bitangent) {
      attributes.bitangent = new GeometryAttribute({
        componentDatatype: ComponentDatatype.FLOAT,
        componentsPerAttribute: 3,
        values: bitangents,
      });
    }
  }
 
  if (defined(ellipsoidGeometry._offsetAttribute)) {
    const length = positions.length;
    const offsetValue =
      ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
        ? 0
        : 1;
    const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
    attributes.applyOffset = new GeometryAttribute({
      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
      componentsPerAttribute: 1,
      values: applyOffset,
    });
  }
 
  return new Geometry({
    attributes: attributes,
    indices: indices,
    primitiveType: PrimitiveType.TRIANGLES,
    boundingSphere: BoundingSphere.fromEllipsoid(ellipsoidOuter),
    offsetAttribute: ellipsoidGeometry._offsetAttribute,
  });
};
 
let unitEllipsoidGeometry;
 
/**
 * Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere.
 * @returns {Geometry} The computed vertices and indices.
 *
 * @private
 */
EllipsoidGeometry.getUnitEllipsoid = function () {
  if (!defined(unitEllipsoidGeometry)) {
    unitEllipsoidGeometry = EllipsoidGeometry.createGeometry(
      new EllipsoidGeometry({
        radii: new Cartesian3(1.0, 1.0, 1.0),
        vertexFormat: VertexFormat.POSITION_ONLY,
      }),
    );
  }
  return unitEllipsoidGeometry;
};
export default EllipsoidGeometry;