Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | 1x 1x 1x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 2x 58x 2x 56x 2x 54x 1x 53x 53x 53x 53x 53x 53x 53x 53x 53x 53x 53x 1x 1x 9x 1x 8x 2x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 1x 1x 1x 1x 8x 2x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 1x 27x 27x 7x 20x 20x 6x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 1x 14x 1x 14x 14x 14x 14x 14x 14x 3x 3x 1x 1x 3x 1x 1x 14x 14x 14x 14x 14x 14x 14x 14x 114x 114x 114x 14x 14x 14x 1291x 1291x 1291x 14x 114x 12964x 12964x 12964x 14x 3x 24x 2822x 2822x 2822x 14x 14x 14x 1291x 1291x 1291x 14x 14x 14x 96x 96x 96x 14x 1291x 10660x 10660x 10660x 14x 3x 259x 2310x 2310x 2310x 14x 14x 138x 138x 15648x 15648x 14x 14x 96x 10564x 10564x 14x 3x 3x 20x 2290x 2290x 14x 3x 3x 3x 1x 2x 2x 3x 1x 1x 1x 2x 2x 14x 14x 2x 2x 2x 2x 14x | import BoundingSphere from "./BoundingSphere.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PrimitiveType from "./PrimitiveType.js";
const defaultRadii = new Cartesian3(1.0, 1.0, 1.0);
const cos = Math.cos;
const sin = Math.sin;
/**
* A description of the outline of an ellipsoid centered at the origin.
*
* @alias EllipsoidOutlineGeometry
* @constructor
*
* @param {object} [options] Object with the following properties:
* @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
* @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
* @param {number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
* @param {number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
* @param {number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
* @param {number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
* @param {number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
*
* @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
* @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
* @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
*
* @example
* const ellipsoid = new Cesium.EllipsoidOutlineGeometry({
* radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
* stackPartitions: 6,
* slicePartitions: 5
* });
* const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
*/
function EllipsoidOutlineGeometry(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const radii = options.radii ?? defaultRadii;
const innerRadii = options.innerRadii ?? radii;
const minimumClock = options.minimumClock ?? 0.0;
const maximumClock = options.maximumClock ?? CesiumMath.TWO_PI;
const minimumCone = options.minimumCone ?? 0.0;
const maximumCone = options.maximumCone ?? CesiumMath.PI;
const stackPartitions = Math.round(options.stackPartitions ?? 10);
const slicePartitions = Math.round(options.slicePartitions ?? 8);
const subdivisions = Math.round(options.subdivisions ?? 128);
//>>includeStart('debug', pragmas.debug);
if (stackPartitions < 1) {
throw new DeveloperError("options.stackPartitions cannot be less than 1");
}
if (slicePartitions < 0) {
throw new DeveloperError("options.slicePartitions cannot be less than 0");
}
if (subdivisions < 0) {
throw new DeveloperError(
"options.subdivisions must be greater than or equal to zero.",
);
}
if (
defined(options.offsetAttribute) &&
options.offsetAttribute === GeometryOffsetAttribute.TOP
) {
throw new DeveloperError(
"GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry.",
);
}
//>>includeEnd('debug');
this._radii = Cartesian3.clone(radii);
this._innerRadii = Cartesian3.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._subdivisions = subdivisions;
this._offsetAttribute = options.offsetAttribute;
this._workerName = "createEllipsoidOutlineGeometry";
}
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
EllipsoidOutlineGeometry.packedLength = 2 * Cartesian3.packedLength + 8;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipsoidOutlineGeometry} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
Cartesian3.pack(value._radii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
Cartesian3.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex++] = value._subdivisions;
array[startingIndex] = value._offsetAttribute ?? -1;
return array;
};
const scratchRadii = new Cartesian3();
const scratchInnerRadii = new Cartesian3();
const scratchOptions = {
radii: scratchRadii,
innerRadii: scratchInnerRadii,
minimumClock: undefined,
maximumClock: undefined,
minimumCone: undefined,
maximumCone: undefined,
stackPartitions: undefined,
slicePartitions: undefined,
subdivisions: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
* @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
*/
EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
const radii = Cartesian3.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartesian3.packedLength;
const innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartesian3.packedLength;
const minimumClock = array[startingIndex++];
const maximumClock = array[startingIndex++];
const minimumCone = array[startingIndex++];
const maximumCone = array[startingIndex++];
const stackPartitions = array[startingIndex++];
const slicePartitions = array[startingIndex++];
const subdivisions = array[startingIndex++];
const offsetAttribute = array[startingIndex];
if (!defined(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.subdivisions = subdivisions;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new EllipsoidOutlineGeometry(scratchOptions);
}
result._radii = Cartesian3.clone(radii, result._radii);
result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._subdivisions = subdivisions;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {
const radii = ellipsoidGeometry._radii;
if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
return;
}
const innerRadii = ellipsoidGeometry._innerRadii;
if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
return;
}
const minimumClock = ellipsoidGeometry._minimumClock;
const maximumClock = ellipsoidGeometry._maximumClock;
const minimumCone = ellipsoidGeometry._minimumCone;
const maximumCone = ellipsoidGeometry._maximumCone;
const subdivisions = ellipsoidGeometry._subdivisions;
const ellipsoid = Ellipsoid.fromCartesian3(radii);
// Add an extra slice and stack to remain consistent with EllipsoidGeometry
let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(
(slicePartitions * Math.abs(maximumClock - minimumClock)) /
CesiumMath.TWO_PI,
);
stackPartitions = Math.round(
(stackPartitions * Math.abs(maximumCone - minimumCone)) / CesiumMath.PI,
);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
let extraIndices = 0;
let vertexMultiplier = 1.0;
const hasInnerSurface =
innerRadii.x !== radii.x ||
innerRadii.y !== radii.y ||
innerRadii.z !== radii.z;
let isTopOpen = false;
let isBotOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2.0;
// Add 2x slicePartitions to connect the top/bottom of the outer to
// the top/bottom of the inner
if (minimumCone > 0.0) {
isTopOpen = true;
extraIndices += slicePartitions;
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += slicePartitions;
}
}
const vertexCount =
subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
const positions = new Float64Array(vertexCount * 3);
// Multiply by two because two points define each line segment
const numIndices =
2 *
(vertexCount +
extraIndices -
(slicePartitions + stackPartitions) * vertexMultiplier);
const indices = IndexDatatype.createTypedArray(vertexCount, numIndices);
let i;
let j;
let theta;
let phi;
let index = 0;
// Calculate sin/cos phi
const sinPhi = new Array(stackPartitions);
const cosPhi = new Array(stackPartitions);
for (i = 0; i < stackPartitions; i++) {
phi =
minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
// Calculate sin/cos theta
const sinTheta = new Array(subdivisions);
const cosTheta = new Array(subdivisions);
for (i = 0; i < subdivisions; i++) {
theta =
minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
// Calculate the latitude lines on the outer surface
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Calculate the latitude lines on the inner surface
if (hasInnerSurface) {
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
// Calculate sin/cos phi
sinPhi.length = subdivisions;
cosPhi.length = subdivisions;
for (i = 0; i < subdivisions; i++) {
phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
// Calculate sin/cos theta for each slice partition
sinTheta.length = slicePartitions;
cosTheta.length = slicePartitions;
for (i = 0; i < slicePartitions; i++) {
theta =
minimumClock +
(i * (maximumClock - minimumClock)) / (slicePartitions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
// Calculate the longitude lines on the outer surface
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Calculate the longitude lines on the inner surface
if (hasInnerSurface) {
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
// Create indices for the latitude lines
index = 0;
for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
const topOffset = i * subdivisions;
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
}
}
// Create indices for the outer longitude lines
let offset = stackPartitions * subdivisions * vertexMultiplier;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + j * slicePartitions;
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
// Create indices for the inner longitude lines
if (hasInnerSurface) {
offset =
stackPartitions * subdivisions * vertexMultiplier +
slicePartitions * subdivisions;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + j * slicePartitions;
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
}
if (hasInnerSurface) {
let outerOffset = stackPartitions * subdivisions * vertexMultiplier;
let innerOffset = outerOffset + subdivisions * slicePartitions;
if (isTopOpen) {
// Draw lines from the top of the inner surface to the top of the outer surface
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
// Draw lines from the top of the inner surface to the top of the outer surface
outerOffset += subdivisions * slicePartitions - slicePartitions;
innerOffset += subdivisions * slicePartitions - slicePartitions;
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
}
const attributes = new GeometryAttributes({
position: new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions,
}),
});
if (defined(ellipsoidGeometry._offsetAttribute)) {
const length = positions.length;
const offsetValue =
ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
? 0
: 1;
const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
attributes.applyOffset = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
return new Geometry({
attributes: attributes,
indices: indices,
primitiveType: PrimitiveType.LINES,
boundingSphere: BoundingSphere.fromEllipsoid(ellipsoid),
offsetAttribute: ellipsoidGeometry._offsetAttribute,
});
};
export default EllipsoidOutlineGeometry;
|