Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | 510x 509x 509x 509x 509x 509x 449x 1x 1546x 1581x 1581x 1581x 1581x 1581x 1581x 1x 1x 65x 65x 65x 1x 3x 1x 1x 8050x 8050x 463x 463x 463x 463x 463x 7587x 7587x 8050x 1x 39x 1x 1x 1562x 1562x 1x 5x 1x 1x 1x 1x 1x 2x 2x 2x 2x 1x 1x 1x 1563x 121x 121x 1563x 1601x 1600x 1599x 252x 1599x 1599x 1599x 7874x 7874x 7874x 30x 7844x 1569x 1x 6x 5x 4x 3x 3x 3x 3x 3x 3x 3x 7x 7x 7x 7x 7x 7x 3x 8118x 8118x 8118x 8118x 8118x 8118x 1x 1x 7881x 7881x 7881x 7881x 7881x 7881x 7881x 7881x 7881x 7881x 7881x 1572x 2x 1570x 1x 1602x 1x 1601x 1601x | import BoundingSphere from "./BoundingSphere.js";
import Cartesian3 from "./Cartesian3.js";
import Check from "./Check.js";
import defined from "./defined.js";
import Ellipsoid from "./Ellipsoid.js";
import Rectangle from "./Rectangle.js";
/**
* Determine whether or not other objects are visible or hidden behind the visible horizon defined by
* an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
* origin of the coordinate system. This class uses the algorithm described in the
* {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
*
* @alias EllipsoidalOccluder
*
* @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
* @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
* specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
* testing visibility.
*
* @constructor
*
* @example
* // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
* const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
* const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
*
* @private
*/
function EllipsoidalOccluder(ellipsoid, cameraPosition) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("ellipsoid", ellipsoid);
//>>includeEnd('debug');
this._ellipsoid = ellipsoid;
this._cameraPosition = new Cartesian3();
this._cameraPositionInScaledSpace = new Cartesian3();
this._distanceToLimbInScaledSpaceSquared = 0.0;
// cameraPosition fills in the above values
if (defined(cameraPosition)) {
this.cameraPosition = cameraPosition;
}
}
Object.defineProperties(EllipsoidalOccluder.prototype, {
/**
* Gets the occluding ellipsoid.
* @memberof EllipsoidalOccluder.prototype
* @type {Ellipsoid}
*/
ellipsoid: {
get: function () {
return this._ellipsoid;
},
},
/**
* Gets or sets the position of the camera.
* @memberof EllipsoidalOccluder.prototype
* @type {Cartesian3}
*/
cameraPosition: {
get: function () {
return this._cameraPosition;
},
set: function (cameraPosition) {
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
const ellipsoid = this._ellipsoid;
const cv = ellipsoid.transformPositionToScaledSpace(
cameraPosition,
this._cameraPositionInScaledSpace,
);
const vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0;
Cartesian3.clone(cameraPosition, this._cameraPosition);
this._cameraPositionInScaledSpace = cv;
this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
},
},
});
const scratchCartesian = new Cartesian3();
/**
* Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
*
* @param {Cartesian3} occludee The point to test for visibility.
* @returns {boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
*
* @example
* const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
* const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
* const point = new Cesium.Cartesian3(0, -3, -3);
* occluder.isPointVisible(point); //returns true
*/
EllipsoidalOccluder.prototype.isPointVisible = function (occludee) {
const ellipsoid = this._ellipsoid;
const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
occludee,
scratchCartesian,
);
return isScaledSpacePointVisible(
occludeeScaledSpacePosition,
this._cameraPositionInScaledSpace,
this._distanceToLimbInScaledSpaceSquared,
);
};
/**
* Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
* occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
* into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
*
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
* @returns {boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
*
* @example
* const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
* const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
* const point = new Cesium.Cartesian3(0, -3, -3);
* const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
* occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
*/
EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function (
occludeeScaledSpacePosition,
) {
return isScaledSpacePointVisible(
occludeeScaledSpacePosition,
this._cameraPositionInScaledSpace,
this._distanceToLimbInScaledSpaceSquared,
);
};
const scratchCameraPositionInScaledSpaceShrunk = new Cartesian3();
/**
* Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an
* ellipsoid that has been shrunk by the minimum height when the minimum height is below
* the ellipsoid. This is intended to be used with points generated by
* {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or
* {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}.
*
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid.
* @returns {boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
*/
EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid =
function (occludeeScaledSpacePosition, minimumHeight) {
const ellipsoid = this._ellipsoid;
let vhMagnitudeSquared;
let cv;
if (
defined(minimumHeight) &&
minimumHeight < 0.0 &&
ellipsoid.minimumRadius > -minimumHeight
) {
// This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot.
cv = scratchCameraPositionInScaledSpaceShrunk;
cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight);
cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight);
cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight);
vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0;
} else {
cv = this._cameraPositionInScaledSpace;
vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
}
return isScaledSpacePointVisible(
occludeeScaledSpacePosition,
cv,
vhMagnitudeSquared,
);
};
/**
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
* is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function (
directionToPoint,
positions,
result,
) {
return computeHorizonCullingPointFromPositions(
this._ellipsoid,
directionToPoint,
positions,
result,
);
};
const scratchEllipsoidShrunk = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
/**
* Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling
* point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
* the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
* for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid =
function (directionToPoint, positions, minimumHeight, result) {
const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
this._ellipsoid,
minimumHeight,
scratchEllipsoidShrunk,
);
return computeHorizonCullingPointFromPositions(
possiblyShrunkEllipsoid,
directionToPoint,
positions,
result,
);
};
/**
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
* is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {number[]|Float32Array|Float64Array} vertices The vertices from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {number} [stride=3]
* @param {Cartesian3} [center=Cartesian3.ZERO]
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices =
function (directionToPoint, vertices, stride, center, result) {
return computeHorizonCullingPointFromVertices(
this._ellipsoid,
directionToPoint,
vertices,
stride,
center,
result,
);
};
/**
* Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling
* point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
* the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
* for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {number[]|Float32Array|Float64Array} vertices The vertices from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {number} [stride=3]
* @param {Cartesian3} [center=Cartesian3.ZERO]
* @param {number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid =
function (directionToPoint, vertices, stride, center, minimumHeight, result) {
const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
this._ellipsoid,
minimumHeight,
scratchEllipsoidShrunk,
);
return computeHorizonCullingPointFromVertices(
possiblyShrunkEllipsoid,
directionToPoint,
vertices,
stride,
center,
result,
);
};
const subsampleScratch = [];
/**
* Computes a point that can be used for horizon culling of a rectangle. If the point is below
* the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
* The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
* @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
* the ellipsoid used by this instance for occlusion testing.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle =
function (rectangle, ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
const positions = Rectangle.subsample(
rectangle,
ellipsoid,
0.0,
subsampleScratch,
);
const bs = BoundingSphere.fromPoints(positions);
// If the bounding sphere center is too close to the center of the occluder, it doesn't make
// sense to try to horizon cull it.
if (Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
return undefined;
}
return this.computeHorizonCullingPoint(bs.center, positions, result);
};
const scratchEllipsoidShrunkRadii = new Cartesian3();
function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) {
if (
defined(minimumHeight) &&
minimumHeight < 0.0 &&
ellipsoid.minimumRadius > -minimumHeight
) {
const ellipsoidShrunkRadii = Cartesian3.fromElements(
ellipsoid.radii.x + minimumHeight,
ellipsoid.radii.y + minimumHeight,
ellipsoid.radii.z + minimumHeight,
scratchEllipsoidShrunkRadii,
);
ellipsoid = Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result);
}
return ellipsoid;
}
function computeHorizonCullingPointFromPositions(
ellipsoid,
directionToPoint,
positions,
result,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("directionToPoint", directionToPoint);
Check.defined("positions", positions);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian3();
}
const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
ellipsoid,
directionToPoint,
);
let resultMagnitude = 0.0;
for (let i = 0, len = positions.length; i < len; ++i) {
const position = positions[i];
const candidateMagnitude = computeMagnitude(
ellipsoid,
position,
scaledSpaceDirectionToPoint,
);
if (candidateMagnitude < 0.0) {
// all points should face the same direction, but this one doesn't, so return undefined
return undefined;
}
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
}
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
}
const positionScratch = new Cartesian3();
function computeHorizonCullingPointFromVertices(
ellipsoid,
directionToPoint,
vertices,
stride,
center,
result,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("directionToPoint", directionToPoint);
Check.defined("vertices", vertices);
Check.typeOf.number("stride", stride);
//>>includeEnd('debug');
Eif (!defined(result)) {
result = new Cartesian3();
}
stride = stride ?? 3;
center = center ?? Cartesian3.ZERO;
const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
ellipsoid,
directionToPoint,
);
let resultMagnitude = 0.0;
for (let i = 0, len = vertices.length; i < len; i += stride) {
positionScratch.x = vertices[i] + center.x;
positionScratch.y = vertices[i + 1] + center.y;
positionScratch.z = vertices[i + 2] + center.z;
const candidateMagnitude = computeMagnitude(
ellipsoid,
positionScratch,
scaledSpaceDirectionToPoint,
);
Iif (candidateMagnitude < 0.0) {
// all points should face the same direction, but this one doesn't, so return undefined
return undefined;
}
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
}
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
}
function isScaledSpacePointVisible(
occludeeScaledSpacePosition,
cameraPositionInScaledSpace,
distanceToLimbInScaledSpaceSquared,
) {
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
const cv = cameraPositionInScaledSpace;
const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared;
const vt = Cartesian3.subtract(
occludeeScaledSpacePosition,
cv,
scratchCartesian,
);
const vtDotVc = -Cartesian3.dot(vt, cv);
// If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
// in this case, set the culling plane to be on V.
const isOccluded =
vhMagnitudeSquared < 0
? vtDotVc > 0
: vtDotVc > vhMagnitudeSquared &&
(vtDotVc * vtDotVc) / Cartesian3.magnitudeSquared(vt) >
vhMagnitudeSquared;
return !isOccluded;
}
const scaledSpaceScratch = new Cartesian3();
const directionScratch = new Cartesian3();
function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
position,
scaledSpaceScratch,
);
let magnitudeSquared = Cartesian3.magnitudeSquared(scaledSpacePosition);
let magnitude = Math.sqrt(magnitudeSquared);
const direction = Cartesian3.divideByScalar(
scaledSpacePosition,
magnitude,
directionScratch,
);
// For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
magnitudeSquared = Math.max(1.0, magnitudeSquared);
magnitude = Math.max(1.0, magnitude);
const cosAlpha = Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
const sinAlpha = Cartesian3.magnitude(
Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction),
);
const cosBeta = 1.0 / magnitude;
const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
}
function magnitudeToPoint(
scaledSpaceDirectionToPoint,
resultMagnitude,
result,
) {
// The horizon culling point is undefined if there were no positions from which to compute it,
// the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
if (
resultMagnitude <= 0.0 ||
resultMagnitude === 1.0 / 0.0 ||
resultMagnitude !== resultMagnitude
) {
return undefined;
}
return Cartesian3.multiplyByScalar(
scaledSpaceDirectionToPoint,
resultMagnitude,
result,
);
}
const directionToPointScratch = new Cartesian3();
function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
if (Cartesian3.equals(directionToPoint, Cartesian3.ZERO)) {
return directionToPoint;
}
ellipsoid.transformPositionToScaledSpace(
directionToPoint,
directionToPointScratch,
);
return Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
}
export default EllipsoidalOccluder;
|