All files / engine/Source/Core HeightmapTessellator.js

99.53% Statements 213/214
94.44% Branches 102/108
100% Functions 1/1
99.52% Lines 210/211

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519                                              1x             1x                 1x 1x 1x 1x                                                                                                                                               1x   26x 2x   24x 2x   22x 1x   21x 1x                 20x 20x 20x 20x 20x 20x 20x   20x 20x 20x 20x 20x   20x 20x   20x   20x 20x             20x 3x 2x 2x 2x 2x   1x 1x     1x 1x         17x 17x 17x 17x     20x 20x 20x 20x   20x 20x 20x 20x   20x   20x   20x     20x     20x   20x     20x   20x 20x   20x 20x   20x 1x 1x     20x 20x 20x 20x   20x 20x   20x       20x       20x 14x   14x           20x 20x 20x 20x   20x 20x 20x 20x   20x   20x 20x 20x   20x 20x 20x 20x 20x       20x 20x 20x 20x   20x 16x 16x 16x 16x     20x   20x 176x 176x 16x   176x 16x     176x   176x 3x     173x     176x 176x   176x 176x 176x 164x 16x 148x 16x       176x 176x 176x     176x 154x           176x 1780x 1780x 164x   1780x 164x     1780x     1780x 1762x   18x     18x 9x         18x         9x         18x             1780x   1780x 1780x   1780x   1780x 9x   1771x     1780x 1780x   1780x   1780x 1744x 1744x 1744x   1744x 1744x   64x 1680x 528x   528x   132x 132x 396x   132x 264x   132x 132x 132x   132x         1716x 1716x   1716x 1716x   1716x 1716x   1716x 1716x 1716x   1716x 1716x 1716x 1716x   1716x 1716x 1716x 1716x   1716x 1716x 1716x   1716x 1638x     1716x             20x   20x 17x                 20x 14x 14x               20x 20x                       20x   20x 20x 1716x                       20x                      
import AxisAlignedBoundingBox from "./AxisAlignedBoundingBox.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import EllipsoidalOccluder from "./EllipsoidalOccluder.js";
import CesiumMath from "./Math.js";
import Matrix4 from "./Matrix4.js";
import OrientedBoundingBox from "./OrientedBoundingBox.js";
import Rectangle from "./Rectangle.js";
import TerrainEncoding from "./TerrainEncoding.js";
import Transforms from "./Transforms.js";
import WebMercatorProjection from "./WebMercatorProjection.js";
 
/**
 * Contains functions to create a mesh from a heightmap image.
 *
 * @namespace HeightmapTessellator
 *
 * @private
 */
const HeightmapTessellator = {};
 
/**
 * The default structure of a heightmap, as given to {@link HeightmapTessellator.computeVertices}.
 *
 * @constant
 */
HeightmapTessellator.DEFAULT_STRUCTURE = Object.freeze({
  heightScale: 1.0,
  heightOffset: 0.0,
  elementsPerHeight: 1,
  stride: 1,
  elementMultiplier: 256.0,
  isBigEndian: false,
});
 
const cartesian3Scratch = new Cartesian3();
const matrix4Scratch = new Matrix4();
const minimumScratch = new Cartesian3();
const maximumScratch = new Cartesian3();
 
/**
 * Fills an array of vertices from a heightmap image.
 *
 * @param {object} options Object with the following properties:
 * @param {Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array} options.heightmap The heightmap to tessellate.
 * @param {number} options.width The width of the heightmap, in height samples.
 * @param {number} options.height The height of the heightmap, in height samples.
 * @param {number} options.skirtHeight The height of skirts to drape at the edges of the heightmap.
 * @param {Rectangle} options.nativeRectangle A rectangle in the native coordinates of the heightmap's projection.  For
 *                 a heightmap with a geographic projection, this is degrees.  For the web mercator
 *                 projection, this is meters.
 * @param {number} [options.exaggeration=1.0] The scale used to exaggerate the terrain.
 * @param {number} [options.exaggerationRelativeHeight=0.0] The height from which terrain is exaggerated.
 * @param {Rectangle} [options.rectangle] The rectangle covered by the heightmap, in geodetic coordinates with north, south, east and
 *                 west properties in radians.  Either rectangle or nativeRectangle must be provided.  If both
 *                 are provided, they're assumed to be consistent.
 * @param {boolean} [options.isGeographic=true] True if the heightmap uses a {@link GeographicProjection}, or false if it uses
 *                  a {@link WebMercatorProjection}.
 * @param {Cartesian3} [options.relativeToCenter=Cartesian3.ZERO] The positions will be computed as <code>Cartesian3.subtract(worldPosition, relativeToCenter)</code>.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid to which the heightmap applies.
 * @param {object} [options.structure] An object describing the structure of the height data.
 * @param {number} [options.structure.heightScale=1.0] The factor by which to multiply height samples in order to obtain
 *                 the height above the heightOffset, in meters.  The heightOffset is added to the resulting
 *                 height after multiplying by the scale.
 * @param {number} [options.structure.heightOffset=0.0] The offset to add to the scaled height to obtain the final
 *                 height in meters.  The offset is added after the height sample is multiplied by the
 *                 heightScale.
 * @param {number} [options.structure.elementsPerHeight=1] The number of elements in the buffer that make up a single height
 *                 sample.  This is usually 1, indicating that each element is a separate height sample.  If
 *                 it is greater than 1, that number of elements together form the height sample, which is
 *                 computed according to the structure.elementMultiplier and structure.isBigEndian properties.
 * @param {number} [options.structure.stride=1] The number of elements to skip to get from the first element of
 *                 one height to the first element of the next height.
 * @param {number} [options.structure.elementMultiplier=256.0] The multiplier used to compute the height value when the
 *                 stride property is greater than 1.  For example, if the stride is 4 and the strideMultiplier
 *                 is 256, the height is computed as follows:
 *                 `height = buffer[index] + buffer[index + 1] * 256 + buffer[index + 2] * 256 * 256 + buffer[index + 3] * 256 * 256 * 256`
 *                 This is assuming that the isBigEndian property is false.  If it is true, the order of the
 *                 elements is reversed.
 * @param {number} [options.structure.lowestEncodedHeight] The lowest value that can be stored in the height buffer.  Any heights that are lower
 *                 than this value after encoding with the `heightScale` and `heightOffset` are clamped to this value.  For example, if the height
 *                 buffer is a `Uint16Array`, this value should be 0 because a `Uint16Array` cannot store negative numbers.  If this parameter is
 *                 not specified, no minimum value is enforced.
 * @param {number} [options.structure.highestEncodedHeight] The highest value that can be stored in the height buffer.  Any heights that are higher
 *                 than this value after encoding with the `heightScale` and `heightOffset` are clamped to this value.  For example, if the height
 *                 buffer is a `Uint16Array`, this value should be `256 * 256 - 1` or 65535 because a `Uint16Array` cannot store numbers larger
 *                 than 65535.  If this parameter is not specified, no maximum value is enforced.
 * @param {boolean} [options.structure.isBigEndian=false] Indicates endianness of the elements in the buffer when the
 *                  stride property is greater than 1.  If this property is false, the first element is the
 *                  low-order element.  If it is true, the first element is the high-order element.
 *
 * @example
 * const width = 5;
 * const height = 5;
 * const statistics = Cesium.HeightmapTessellator.computeVertices({
 *     heightmap : [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],
 *     width : width,
 *     height : height,
 *     skirtHeight : 0.0,
 *     nativeRectangle : {
 *         west : 10.0,
 *         east : 20.0,
 *         south : 30.0,
 *         north : 40.0
 *     }
 * });
 *
 * const encoding = statistics.encoding;
 * const position = encoding.decodePosition(statistics.vertices, index);
 */
HeightmapTessellator.computeVertices = function (options) {
  //>>includeStart('debug', pragmas.debug);
  if (!defined(options) || !defined(options.heightmap)) {
    throw new DeveloperError("options.heightmap is required.");
  }
  if (!defined(options.width) || !defined(options.height)) {
    throw new DeveloperError("options.width and options.height are required.");
  }
  if (!defined(options.nativeRectangle)) {
    throw new DeveloperError("options.nativeRectangle is required.");
  }
  if (!defined(options.skirtHeight)) {
    throw new DeveloperError("options.skirtHeight is required.");
  }
  //>>includeEnd('debug');
 
  // This function tends to be a performance hotspot for terrain rendering,
  // so it employs a lot of inlining and unrolling as an optimization.
  // In particular, the functionality of Ellipsoid.cartographicToCartesian
  // is inlined.
 
  const cos = Math.cos;
  const sin = Math.sin;
  const sqrt = Math.sqrt;
  const atan = Math.atan;
  const exp = Math.exp;
  const piOverTwo = CesiumMath.PI_OVER_TWO;
  const toRadians = CesiumMath.toRadians;
 
  const heightmap = options.heightmap;
  const width = options.width;
  const height = options.height;
  const skirtHeight = options.skirtHeight;
  const hasSkirts = skirtHeight > 0.0;
 
  const isGeographic = options.isGeographic ?? true;
  const ellipsoid = options.ellipsoid ?? Ellipsoid.default;
 
  const oneOverGlobeSemimajorAxis = 1.0 / ellipsoid.maximumRadius;
 
  const nativeRectangle = Rectangle.clone(options.nativeRectangle);
  const rectangle = Rectangle.clone(options.rectangle);
 
  let geographicWest;
  let geographicSouth;
  let geographicEast;
  let geographicNorth;
 
  if (!defined(rectangle)) {
    if (isGeographic) {
      geographicWest = toRadians(nativeRectangle.west);
      geographicSouth = toRadians(nativeRectangle.south);
      geographicEast = toRadians(nativeRectangle.east);
      geographicNorth = toRadians(nativeRectangle.north);
    } else {
      geographicWest = nativeRectangle.west * oneOverGlobeSemimajorAxis;
      geographicSouth =
        piOverTwo -
        2.0 * atan(exp(-nativeRectangle.south * oneOverGlobeSemimajorAxis));
      geographicEast = nativeRectangle.east * oneOverGlobeSemimajorAxis;
      geographicNorth =
        piOverTwo -
        2.0 * atan(exp(-nativeRectangle.north * oneOverGlobeSemimajorAxis));
    }
  } else {
    geographicWest = rectangle.west;
    geographicSouth = rectangle.south;
    geographicEast = rectangle.east;
    geographicNorth = rectangle.north;
  }
 
  let relativeToCenter = options.relativeToCenter;
  const hasRelativeToCenter = defined(relativeToCenter);
  relativeToCenter = hasRelativeToCenter ? relativeToCenter : Cartesian3.ZERO;
  const includeWebMercatorT = options.includeWebMercatorT ?? false;
 
  const exaggeration = options.exaggeration ?? 1.0;
  const exaggerationRelativeHeight = options.exaggerationRelativeHeight ?? 0.0;
  const hasExaggeration = exaggeration !== 1.0;
  const includeGeodeticSurfaceNormals = hasExaggeration;
 
  const structure = options.structure ?? HeightmapTessellator.DEFAULT_STRUCTURE;
  const heightScale =
    structure.heightScale ?? HeightmapTessellator.DEFAULT_STRUCTURE.heightScale;
  const heightOffset =
    structure.heightOffset ??
    HeightmapTessellator.DEFAULT_STRUCTURE.heightOffset;
  const elementsPerHeight =
    structure.elementsPerHeight ??
    HeightmapTessellator.DEFAULT_STRUCTURE.elementsPerHeight;
  const stride =
    structure.stride ?? HeightmapTessellator.DEFAULT_STRUCTURE.stride;
  const elementMultiplier =
    structure.elementMultiplier ??
    HeightmapTessellator.DEFAULT_STRUCTURE.elementMultiplier;
  const isBigEndian =
    structure.isBigEndian ?? HeightmapTessellator.DEFAULT_STRUCTURE.isBigEndian;
 
  let rectangleWidth = Rectangle.computeWidth(nativeRectangle);
  let rectangleHeight = Rectangle.computeHeight(nativeRectangle);
 
  const granularityX = rectangleWidth / (width - 1);
  const granularityY = rectangleHeight / (height - 1);
 
  if (!isGeographic) {
    rectangleWidth *= oneOverGlobeSemimajorAxis;
    rectangleHeight *= oneOverGlobeSemimajorAxis;
  }
 
  const radiiSquared = ellipsoid.radiiSquared;
  const radiiSquaredX = radiiSquared.x;
  const radiiSquaredY = radiiSquared.y;
  const radiiSquaredZ = radiiSquared.z;
 
  let minimumHeight = 65536.0;
  let maximumHeight = -65536.0;
 
  const fromENU = Transforms.eastNorthUpToFixedFrame(
    relativeToCenter,
    ellipsoid,
  );
  const toENU = Matrix4.inverseTransformation(fromENU, matrix4Scratch);
 
  let southMercatorY;
  let oneOverMercatorHeight;
  if (includeWebMercatorT) {
    southMercatorY =
      WebMercatorProjection.geodeticLatitudeToMercatorAngle(geographicSouth);
    oneOverMercatorHeight =
      1.0 /
      (WebMercatorProjection.geodeticLatitudeToMercatorAngle(geographicNorth) -
        southMercatorY);
  }
 
  const minimum = minimumScratch;
  minimum.x = Number.POSITIVE_INFINITY;
  minimum.y = Number.POSITIVE_INFINITY;
  minimum.z = Number.POSITIVE_INFINITY;
 
  const maximum = maximumScratch;
  maximum.x = Number.NEGATIVE_INFINITY;
  maximum.y = Number.NEGATIVE_INFINITY;
  maximum.z = Number.NEGATIVE_INFINITY;
 
  let hMin = Number.POSITIVE_INFINITY;
 
  const gridVertexCount = width * height;
  const edgeVertexCount = skirtHeight > 0.0 ? width * 2 + height * 2 : 0;
  const vertexCount = gridVertexCount + edgeVertexCount;
 
  const positions = new Array(vertexCount);
  const heights = new Array(vertexCount);
  const uvs = new Array(vertexCount);
  const webMercatorTs = includeWebMercatorT ? new Array(vertexCount) : [];
  const geodeticSurfaceNormals = includeGeodeticSurfaceNormals
    ? new Array(vertexCount)
    : [];
 
  let startRow = 0;
  let endRow = height;
  let startCol = 0;
  let endCol = width;
 
  if (hasSkirts) {
    --startRow;
    ++endRow;
    --startCol;
    ++endCol;
  }
 
  const skirtOffsetPercentage = 0.00001;
 
  for (let rowIndex = startRow; rowIndex < endRow; ++rowIndex) {
    let row = rowIndex;
    if (row < 0) {
      row = 0;
    }
    if (row >= height) {
      row = height - 1;
    }
 
    let latitude = nativeRectangle.north - granularityY * row;
 
    if (!isGeographic) {
      latitude =
        piOverTwo - 2.0 * atan(exp(-latitude * oneOverGlobeSemimajorAxis));
    } else {
      latitude = toRadians(latitude);
    }
 
    let v = (latitude - geographicSouth) / (geographicNorth - geographicSouth);
    v = CesiumMath.clamp(v, 0.0, 1.0);
 
    const isNorthEdge = rowIndex === startRow;
    const isSouthEdge = rowIndex === endRow - 1;
    if (skirtHeight > 0.0) {
      if (isNorthEdge) {
        latitude += skirtOffsetPercentage * rectangleHeight;
      } else if (isSouthEdge) {
        latitude -= skirtOffsetPercentage * rectangleHeight;
      }
    }
 
    const cosLatitude = cos(latitude);
    const nZ = sin(latitude);
    const kZ = radiiSquaredZ * nZ;
 
    let webMercatorT;
    if (includeWebMercatorT) {
      webMercatorT =
        (WebMercatorProjection.geodeticLatitudeToMercatorAngle(latitude) -
          southMercatorY) *
        oneOverMercatorHeight;
    }
 
    for (let colIndex = startCol; colIndex < endCol; ++colIndex) {
      let col = colIndex;
      if (col < 0) {
        col = 0;
      }
      if (col >= width) {
        col = width - 1;
      }
 
      const terrainOffset = row * (width * stride) + col * stride;
 
      let heightSample;
      if (elementsPerHeight === 1) {
        heightSample = heightmap[terrainOffset];
      } else {
        heightSample = 0;
 
        let elementOffset;
        if (isBigEndian) {
          for (
            elementOffset = 0;
            elementOffset < elementsPerHeight;
            ++elementOffset
          ) {
            heightSample =
              heightSample * elementMultiplier +
              heightmap[terrainOffset + elementOffset];
          }
        } else {
          for (
            elementOffset = elementsPerHeight - 1;
            elementOffset >= 0;
            --elementOffset
          ) {
            heightSample =
              heightSample * elementMultiplier +
              heightmap[terrainOffset + elementOffset];
          }
        }
      }
 
      heightSample = heightSample * heightScale + heightOffset;
 
      maximumHeight = Math.max(maximumHeight, heightSample);
      minimumHeight = Math.min(minimumHeight, heightSample);
 
      let longitude = nativeRectangle.west + granularityX * col;
 
      if (!isGeographic) {
        longitude = longitude * oneOverGlobeSemimajorAxis;
      } else {
        longitude = toRadians(longitude);
      }
 
      let u = (longitude - geographicWest) / (geographicEast - geographicWest);
      u = CesiumMath.clamp(u, 0.0, 1.0);
 
      let index = row * width + col;
 
      if (skirtHeight > 0.0) {
        const isWestEdge = colIndex === startCol;
        const isEastEdge = colIndex === endCol - 1;
        const isEdge = isNorthEdge || isSouthEdge || isWestEdge || isEastEdge;
        const isCorner =
          (isNorthEdge || isSouthEdge) && (isWestEdge || isEastEdge);
        if (isCorner) {
          // Don't generate skirts on the corners.
          continue;
        } else if (isEdge) {
          heightSample -= skirtHeight;
 
          if (isWestEdge) {
            // The outer loop iterates north to south but the indices are ordered south to north, hence the index flip below
            index = gridVertexCount + (height - row - 1);
            longitude -= skirtOffsetPercentage * rectangleWidth;
          } else if (isSouthEdge) {
            // Add after west indices. South indices are ordered east to west.
            index = gridVertexCount + height + (width - col - 1);
          } else if (isEastEdge) {
            // Add after west and south indices. East indices are ordered north to south. The index is flipped like above.
            index = gridVertexCount + height + width + row;
            longitude += skirtOffsetPercentage * rectangleWidth;
          } else Eif (isNorthEdge) {
            // Add after west, south, and east indices. North indices are ordered west to east.
            index = gridVertexCount + height + width + height + col;
          }
        }
      }
 
      const nX = cosLatitude * cos(longitude);
      const nY = cosLatitude * sin(longitude);
 
      const kX = radiiSquaredX * nX;
      const kY = radiiSquaredY * nY;
 
      const gamma = sqrt(kX * nX + kY * nY + kZ * nZ);
      const oneOverGamma = 1.0 / gamma;
 
      const rSurfaceX = kX * oneOverGamma;
      const rSurfaceY = kY * oneOverGamma;
      const rSurfaceZ = kZ * oneOverGamma;
 
      const position = new Cartesian3();
      position.x = rSurfaceX + nX * heightSample;
      position.y = rSurfaceY + nY * heightSample;
      position.z = rSurfaceZ + nZ * heightSample;
 
      Matrix4.multiplyByPoint(toENU, position, cartesian3Scratch);
      Cartesian3.minimumByComponent(cartesian3Scratch, minimum, minimum);
      Cartesian3.maximumByComponent(cartesian3Scratch, maximum, maximum);
      hMin = Math.min(hMin, heightSample);
 
      positions[index] = position;
      uvs[index] = new Cartesian2(u, v);
      heights[index] = heightSample;
 
      if (includeWebMercatorT) {
        webMercatorTs[index] = webMercatorT;
      }
 
      Iif (includeGeodeticSurfaceNormals) {
        geodeticSurfaceNormals[index] =
          ellipsoid.geodeticSurfaceNormal(position);
      }
    }
  }
 
  const boundingSphere3D = BoundingSphere.fromPoints(positions);
  let orientedBoundingBox;
  if (defined(rectangle)) {
    orientedBoundingBox = OrientedBoundingBox.fromRectangle(
      rectangle,
      minimumHeight,
      maximumHeight,
      ellipsoid,
    );
  }
 
  let occludeePointInScaledSpace;
  if (hasRelativeToCenter) {
    const occluder = new EllipsoidalOccluder(ellipsoid);
    occludeePointInScaledSpace =
      occluder.computeHorizonCullingPointPossiblyUnderEllipsoid(
        relativeToCenter,
        positions,
        minimumHeight,
      );
  }
 
  const aaBox = new AxisAlignedBoundingBox(minimum, maximum, relativeToCenter);
  const encoding = new TerrainEncoding(
    relativeToCenter,
    aaBox,
    hMin,
    maximumHeight,
    fromENU,
    false,
    includeWebMercatorT,
    includeGeodeticSurfaceNormals,
    exaggeration,
    exaggerationRelativeHeight,
  );
  const vertices = new Float32Array(vertexCount * encoding.stride);
 
  let bufferIndex = 0;
  for (let j = 0; j < vertexCount; ++j) {
    bufferIndex = encoding.encode(
      vertices,
      bufferIndex,
      positions[j],
      uvs[j],
      heights[j],
      undefined,
      webMercatorTs[j],
      geodeticSurfaceNormals[j],
    );
  }
 
  return {
    vertices: vertices,
    maximumHeight: maximumHeight,
    minimumHeight: minimumHeight,
    encoding: encoding,
    boundingSphere3D: boundingSphere3D,
    orientedBoundingBox: orientedBoundingBox,
    occludeePointInScaledSpace: occludeePointInScaledSpace,
  };
};
export default HeightmapTessellator;