All files / engine/Source/Core PolylinePipeline.js

100% Statements 226/226
100% Branches 68/68
100% Functions 11/11
100% Lines 220/220

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574                              1x   1x 479x 479x     1x   22x     22x           1x 1x 27x 27x 27x 66x 66x   27x     1x 1x 1x 1x 1x 1x 1x 1x   1x     228x 228x     228x 188x 699x   188x     40x 40x   40x 42x 42x     40x     1x 1x 1x 1x 1x 1x 1x                             217x 217x 217x 217x 217x 217x   217x   217x   217x 217x 217x 217x 217x   217x 327x       327x 327x 327x 327x     217x                               11x 11x 11x         11x 11x 11x   11x 3x   11x   11x   11x 11x 11x 11x 11x   11x 186x       186x 186x 186x 186x     11x                                                   1x 429x 429x   429x 311x 311x         311x         311x               311x         311x               311x           311x 311x 311x   311x 311x 463286x     463286x         133075x           133075x   133071x         133071x 66536x     133071x     133071x   133071x 133071x     133071x       463286x 463286x   463286x     311x     429x                                                   1x 208x 1x   208x   208x 1x       207x 207x 207x 207x   207x 1x 206x 2x 2x 2x 1x 1x 1x     2x     204x 204x 115x 115x     204x     204x 217x             204x 204x 204x   204x 217x 217x   217x 217x   217x                       204x   204x 204x 204x 204x 204x   204x     1x 1x                                           1x 10x 1x   10x   10x 1x       9x 9x 9x 9x   9x 1x 8x 2x 2x 2x 1x 1x 1x     2x     6x   6x     6x         6x 11x       11x 11x     6x 6x 6x   6x 11x 11x   11x 11x   11x                       6x   6x 6x 6x 6x 6x   6x                                             1x 11x 11x 11x 11x 218x   11x                                             1x 3x 3x 3x 3x 180x   3x      
import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import EllipsoidGeodesic from "./EllipsoidGeodesic.js";
import EllipsoidRhumbLine from "./EllipsoidRhumbLine.js";
import IntersectionTests from "./IntersectionTests.js";
import CesiumMath from "./Math.js";
import Matrix4 from "./Matrix4.js";
import Plane from "./Plane.js";
 
/**
 * @private
 */
const PolylinePipeline = {};
 
PolylinePipeline.numberOfPoints = function (p0, p1, minDistance) {
  const distance = Cartesian3.distance(p0, p1);
  return Math.ceil(distance / minDistance);
};
 
PolylinePipeline.numberOfPointsRhumbLine = function (p0, p1, granularity) {
  const radiansDistanceSquared =
    Math.pow(p0.longitude - p1.longitude, 2) +
    Math.pow(p0.latitude - p1.latitude, 2);
 
  return Math.max(
    1,
    Math.ceil(Math.sqrt(radiansDistanceSquared / (granularity * granularity))),
  );
};
 
const cartoScratch = new Cartographic();
PolylinePipeline.extractHeights = function (positions, ellipsoid) {
  const length = positions.length;
  const heights = new Array(length);
  for (let i = 0; i < length; i++) {
    const p = positions[i];
    heights[i] = ellipsoid.cartesianToCartographic(p, cartoScratch).height;
  }
  return heights;
};
 
const wrapLongitudeInversMatrix = new Matrix4();
const wrapLongitudeOrigin = new Cartesian3();
const wrapLongitudeXZNormal = new Cartesian3();
const wrapLongitudeXZPlane = new Plane(Cartesian3.UNIT_X, 0.0);
const wrapLongitudeYZNormal = new Cartesian3();
const wrapLongitudeYZPlane = new Plane(Cartesian3.UNIT_X, 0.0);
const wrapLongitudeIntersection = new Cartesian3();
const wrapLongitudeOffset = new Cartesian3();
 
const subdivideHeightsScratchArray = [];
 
function subdivideHeights(numPoints, h0, h1) {
  const heights = subdivideHeightsScratchArray;
  heights.length = numPoints;
 
  let i;
  if (h0 === h1) {
    for (i = 0; i < numPoints; i++) {
      heights[i] = h0;
    }
    return heights;
  }
 
  const dHeight = h1 - h0;
  const heightPerVertex = dHeight / numPoints;
 
  for (i = 0; i < numPoints; i++) {
    const h = h0 + i * heightPerVertex;
    heights[i] = h;
  }
 
  return heights;
}
 
const carto1 = new Cartographic();
const carto2 = new Cartographic();
const cartesian = new Cartesian3();
const scaleFirst = new Cartesian3();
const scaleLast = new Cartesian3();
const ellipsoidGeodesic = new EllipsoidGeodesic();
let ellipsoidRhumb = new EllipsoidRhumbLine();
 
//Returns subdivided line scaled to ellipsoid surface starting at p1 and ending at p2.
//Result includes p1, but not include p2.  This function is called for a sequence of line segments,
//and this prevents duplication of end point.
function generateCartesianArc(
  p0,
  p1,
  minDistance,
  ellipsoid,
  h0,
  h1,
  array,
  offset,
) {
  const first = ellipsoid.scaleToGeodeticSurface(p0, scaleFirst);
  const last = ellipsoid.scaleToGeodeticSurface(p1, scaleLast);
  const numPoints = PolylinePipeline.numberOfPoints(p0, p1, minDistance);
  const start = ellipsoid.cartesianToCartographic(first, carto1);
  const end = ellipsoid.cartesianToCartographic(last, carto2);
  const heights = subdivideHeights(numPoints, h0, h1);
 
  ellipsoidGeodesic.setEndPoints(start, end);
  const surfaceDistanceBetweenPoints =
    ellipsoidGeodesic.surfaceDistance / numPoints;
 
  let index = offset;
  start.height = h0;
  let cart = ellipsoid.cartographicToCartesian(start, cartesian);
  Cartesian3.pack(cart, array, index);
  index += 3;
 
  for (let i = 1; i < numPoints; i++) {
    const carto = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
      i * surfaceDistanceBetweenPoints,
      carto2,
    );
    carto.height = heights[i];
    cart = ellipsoid.cartographicToCartesian(carto, cartesian);
    Cartesian3.pack(cart, array, index);
    index += 3;
  }
 
  return index;
}
 
//Returns subdivided line scaled to ellipsoid surface starting at p1 and ending at p2.
//Result includes p1, but not include p2.  This function is called for a sequence of line segments,
//and this prevents duplication of end point.
function generateCartesianRhumbArc(
  p0,
  p1,
  granularity,
  ellipsoid,
  h0,
  h1,
  array,
  offset,
) {
  const start = ellipsoid.cartesianToCartographic(p0, carto1);
  const end = ellipsoid.cartesianToCartographic(p1, carto2);
  const numPoints = PolylinePipeline.numberOfPointsRhumbLine(
    start,
    end,
    granularity,
  );
  start.height = 0.0;
  end.height = 0.0;
  const heights = subdivideHeights(numPoints, h0, h1);
 
  if (!ellipsoidRhumb.ellipsoid.equals(ellipsoid)) {
    ellipsoidRhumb = new EllipsoidRhumbLine(undefined, undefined, ellipsoid);
  }
  ellipsoidRhumb.setEndPoints(start, end);
  const surfaceDistanceBetweenPoints =
    ellipsoidRhumb.surfaceDistance / numPoints;
 
  let index = offset;
  start.height = h0;
  let cart = ellipsoid.cartographicToCartesian(start, cartesian);
  Cartesian3.pack(cart, array, index);
  index += 3;
 
  for (let i = 1; i < numPoints; i++) {
    const carto = ellipsoidRhumb.interpolateUsingSurfaceDistance(
      i * surfaceDistanceBetweenPoints,
      carto2,
    );
    carto.height = heights[i];
    cart = ellipsoid.cartographicToCartesian(carto, cartesian);
    Cartesian3.pack(cart, array, index);
    index += 3;
  }
 
  return index;
}
 
/**
 * Breaks a {@link Polyline} into segments such that it does not cross the &plusmn;180 degree meridian of an ellipsoid.
 *
 * @param {Cartesian3[]} positions The polyline's Cartesian positions.
 * @param {Matrix4} [modelMatrix=Matrix4.IDENTITY] The polyline's model matrix. Assumed to be an affine
 * transformation matrix, where the upper left 3x3 elements are a rotation matrix, and
 * the upper three elements in the fourth column are the translation.  The bottom row is assumed to be [0, 0, 0, 1].
 * The matrix is not verified to be in the proper form.
 * @returns {object} An object with a <code>positions</code> property that is an array of positions and a
 * <code>segments</code> property.
 *
 *
 * @example
 * const polylines = new Cesium.PolylineCollection();
 * const polyline = polylines.add(...);
 * const positions = polyline.positions;
 * const modelMatrix = polylines.modelMatrix;
 * const segments = Cesium.PolylinePipeline.wrapLongitude(positions, modelMatrix);
 *
 * @see PolygonPipeline.wrapLongitude
 * @see Polyline
 * @see PolylineCollection
 */
PolylinePipeline.wrapLongitude = function (positions, modelMatrix) {
  const cartesians = [];
  const segments = [];
 
  if (defined(positions) && positions.length > 0) {
    modelMatrix = modelMatrix ?? Matrix4.IDENTITY;
    const inverseModelMatrix = Matrix4.inverseTransformation(
      modelMatrix,
      wrapLongitudeInversMatrix,
    );
 
    const origin = Matrix4.multiplyByPoint(
      inverseModelMatrix,
      Cartesian3.ZERO,
      wrapLongitudeOrigin,
    );
    const xzNormal = Cartesian3.normalize(
      Matrix4.multiplyByPointAsVector(
        inverseModelMatrix,
        Cartesian3.UNIT_Y,
        wrapLongitudeXZNormal,
      ),
      wrapLongitudeXZNormal,
    );
    const xzPlane = Plane.fromPointNormal(
      origin,
      xzNormal,
      wrapLongitudeXZPlane,
    );
    const yzNormal = Cartesian3.normalize(
      Matrix4.multiplyByPointAsVector(
        inverseModelMatrix,
        Cartesian3.UNIT_X,
        wrapLongitudeYZNormal,
      ),
      wrapLongitudeYZNormal,
    );
    const yzPlane = Plane.fromPointNormal(
      origin,
      yzNormal,
      wrapLongitudeYZPlane,
    );
 
    let count = 1;
    cartesians.push(Cartesian3.clone(positions[0]));
    let prev = cartesians[0];
 
    const length = positions.length;
    for (let i = 1; i < length; ++i) {
      const cur = positions[i];
 
      // intersects the IDL if either endpoint is on the negative side of the yz-plane
      if (
        Plane.getPointDistance(yzPlane, prev) < 0.0 ||
        Plane.getPointDistance(yzPlane, cur) < 0.0
      ) {
        // and intersects the xz-plane
        const intersection = IntersectionTests.lineSegmentPlane(
          prev,
          cur,
          xzPlane,
          wrapLongitudeIntersection,
        );
        if (defined(intersection)) {
          // move point on the xz-plane slightly away from the plane
          const offset = Cartesian3.multiplyByScalar(
            xzNormal,
            5.0e-9,
            wrapLongitudeOffset,
          );
          if (Plane.getPointDistance(xzPlane, prev) < 0.0) {
            Cartesian3.negate(offset, offset);
          }
 
          cartesians.push(
            Cartesian3.add(intersection, offset, new Cartesian3()),
          );
          segments.push(count + 1);
 
          Cartesian3.negate(offset, offset);
          cartesians.push(
            Cartesian3.add(intersection, offset, new Cartesian3()),
          );
          count = 1;
        }
      }
 
      cartesians.push(Cartesian3.clone(positions[i]));
      count++;
 
      prev = cur;
    }
 
    segments.push(count);
  }
 
  return {
    positions: cartesians,
    lengths: segments,
  };
};
 
/**
 * Subdivides polyline and raises all points to the specified height.  Returns an array of numbers to represent the positions.
 * @param {object} options Object with the following properties:
 * @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
 * @param {number|number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
 * @param {number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid on which the positions lie.
 * @returns {number[]} A new array of positions of type {number} that have been subdivided and raised to the surface of the ellipsoid.
 *
 * @example
 * const positions = Cesium.Cartesian3.fromDegreesArray([
 *   -105.0, 40.0,
 *   -100.0, 38.0,
 *   -105.0, 35.0,
 *   -100.0, 32.0
 * ]);
 * const surfacePositions = Cesium.PolylinePipeline.generateArc({
 *   positons: positions
 * });
 */
PolylinePipeline.generateArc = function (options) {
  if (!defined(options)) {
    options = {};
  }
  const positions = options.positions;
  //>>includeStart('debug', pragmas.debug);
  if (!defined(positions)) {
    throw new DeveloperError("options.positions is required.");
  }
  //>>includeEnd('debug');
 
  const length = positions.length;
  const ellipsoid = options.ellipsoid ?? Ellipsoid.default;
  let height = options.height ?? 0;
  const hasHeightArray = Array.isArray(height);
 
  if (length < 1) {
    return [];
  } else if (length === 1) {
    const p = ellipsoid.scaleToGeodeticSurface(positions[0], scaleFirst);
    height = hasHeightArray ? height[0] : height;
    if (height !== 0) {
      const n = ellipsoid.geodeticSurfaceNormal(p, cartesian);
      Cartesian3.multiplyByScalar(n, height, n);
      Cartesian3.add(p, n, p);
    }
 
    return [p.x, p.y, p.z];
  }
 
  let minDistance = options.minDistance;
  if (!defined(minDistance)) {
    const granularity = options.granularity ?? CesiumMath.RADIANS_PER_DEGREE;
    minDistance = CesiumMath.chordLength(granularity, ellipsoid.maximumRadius);
  }
 
  let numPoints = 0;
  let i;
 
  for (i = 0; i < length - 1; i++) {
    numPoints += PolylinePipeline.numberOfPoints(
      positions[i],
      positions[i + 1],
      minDistance,
    );
  }
 
  const arrayLength = (numPoints + 1) * 3;
  const newPositions = new Array(arrayLength);
  let offset = 0;
 
  for (i = 0; i < length - 1; i++) {
    const p0 = positions[i];
    const p1 = positions[i + 1];
 
    const h0 = hasHeightArray ? height[i] : height;
    const h1 = hasHeightArray ? height[i + 1] : height;
 
    offset = generateCartesianArc(
      p0,
      p1,
      minDistance,
      ellipsoid,
      h0,
      h1,
      newPositions,
      offset,
    );
  }
 
  subdivideHeightsScratchArray.length = 0;
 
  const lastPoint = positions[length - 1];
  const carto = ellipsoid.cartesianToCartographic(lastPoint, carto1);
  carto.height = hasHeightArray ? height[length - 1] : height;
  const cart = ellipsoid.cartographicToCartesian(carto, cartesian);
  Cartesian3.pack(cart, newPositions, arrayLength - 3);
 
  return newPositions;
};
 
const scratchCartographic0 = new Cartographic();
const scratchCartographic1 = new Cartographic();
 
/**
 * Subdivides polyline and raises all points to the specified height using Rhumb lines.  Returns an array of numbers to represent the positions.
 * @param {object} options Object with the following properties:
 * @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
 * @param {number|number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
 * @param {number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid on which the positions lie.
 * @returns {number[]} A new array of positions of type {number} that have been subdivided and raised to the surface of the ellipsoid.
 *
 * @example
 * const positions = Cesium.Cartesian3.fromDegreesArray([
 *   -105.0, 40.0,
 *   -100.0, 38.0,
 *   -105.0, 35.0,
 *   -100.0, 32.0
 * ]);
 * const surfacePositions = Cesium.PolylinePipeline.generateRhumbArc({
 *   positons: positions
 * });
 */
PolylinePipeline.generateRhumbArc = function (options) {
  if (!defined(options)) {
    options = {};
  }
  const positions = options.positions;
  //>>includeStart('debug', pragmas.debug);
  if (!defined(positions)) {
    throw new DeveloperError("options.positions is required.");
  }
  //>>includeEnd('debug');
 
  const length = positions.length;
  const ellipsoid = options.ellipsoid ?? Ellipsoid.default;
  let height = options.height ?? 0;
  const hasHeightArray = Array.isArray(height);
 
  if (length < 1) {
    return [];
  } else if (length === 1) {
    const p = ellipsoid.scaleToGeodeticSurface(positions[0], scaleFirst);
    height = hasHeightArray ? height[0] : height;
    if (height !== 0) {
      const n = ellipsoid.geodeticSurfaceNormal(p, cartesian);
      Cartesian3.multiplyByScalar(n, height, n);
      Cartesian3.add(p, n, p);
    }
 
    return [p.x, p.y, p.z];
  }
 
  const granularity = options.granularity ?? CesiumMath.RADIANS_PER_DEGREE;
 
  let numPoints = 0;
  let i;
 
  let c0 = ellipsoid.cartesianToCartographic(
    positions[0],
    scratchCartographic0,
  );
  let c1;
  for (i = 0; i < length - 1; i++) {
    c1 = ellipsoid.cartesianToCartographic(
      positions[i + 1],
      scratchCartographic1,
    );
    numPoints += PolylinePipeline.numberOfPointsRhumbLine(c0, c1, granularity);
    c0 = Cartographic.clone(c1, scratchCartographic0);
  }
 
  const arrayLength = (numPoints + 1) * 3;
  const newPositions = new Array(arrayLength);
  let offset = 0;
 
  for (i = 0; i < length - 1; i++) {
    const p0 = positions[i];
    const p1 = positions[i + 1];
 
    const h0 = hasHeightArray ? height[i] : height;
    const h1 = hasHeightArray ? height[i + 1] : height;
 
    offset = generateCartesianRhumbArc(
      p0,
      p1,
      granularity,
      ellipsoid,
      h0,
      h1,
      newPositions,
      offset,
    );
  }
 
  subdivideHeightsScratchArray.length = 0;
 
  const lastPoint = positions[length - 1];
  const carto = ellipsoid.cartesianToCartographic(lastPoint, carto1);
  carto.height = hasHeightArray ? height[length - 1] : height;
  const cart = ellipsoid.cartographicToCartesian(carto, cartesian);
  Cartesian3.pack(cart, newPositions, arrayLength - 3);
 
  return newPositions;
};
 
/**
 * Subdivides polyline and raises all points to the specified height. Returns an array of new {Cartesian3} positions.
 * @param {object} options Object with the following properties:
 * @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
 * @param {number|number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
 * @param {number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid on which the positions lie.
 * @returns {Cartesian3[]} A new array of cartesian3 positions that have been subdivided and raised to the surface of the ellipsoid.
 *
 * @example
 * const positions = Cesium.Cartesian3.fromDegreesArray([
 *   -105.0, 40.0,
 *   -100.0, 38.0,
 *   -105.0, 35.0,
 *   -100.0, 32.0
 * ]);
 * const surfacePositions = Cesium.PolylinePipeline.generateCartesianArc({
 *   positons: positions
 * });
 */
PolylinePipeline.generateCartesianArc = function (options) {
  const numberArray = PolylinePipeline.generateArc(options);
  const size = numberArray.length / 3;
  const newPositions = new Array(size);
  for (let i = 0; i < size; i++) {
    newPositions[i] = Cartesian3.unpack(numberArray, i * 3);
  }
  return newPositions;
};
 
/**
 * Subdivides polyline and raises all points to the specified height using Rhumb Lines. Returns an array of new {Cartesian3} positions.
 * @param {object} options Object with the following properties:
 * @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
 * @param {number|number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
 * @param {number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid on which the positions lie.
 * @returns {Cartesian3[]} A new array of cartesian3 positions that have been subdivided and raised to the surface of the ellipsoid.
 *
 * @example
 * const positions = Cesium.Cartesian3.fromDegreesArray([
 *   -105.0, 40.0,
 *   -100.0, 38.0,
 *   -105.0, 35.0,
 *   -100.0, 32.0
 * ]);
 * const surfacePositions = Cesium.PolylinePipeline.generateCartesianRhumbArc({
 *   positons: positions
 * });
 */
PolylinePipeline.generateCartesianRhumbArc = function (options) {
  const numberArray = PolylinePipeline.generateRhumbArc(options);
  const size = numberArray.length / 3;
  const newPositions = new Array(size);
  for (let i = 0; i < size; i++) {
    newPositions[i] = Cartesian3.unpack(numberArray, i * 3);
  }
  return newPositions;
};
export default PolylinePipeline;