Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 12x 12x 12x 12x 4x 33x 33x 33x 33x 33x 2x 31x 1x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 1x 26x 5x 21x 5x 16x 16x 16x 16x 16x 47x 16x 16x 16x 16x 9x 16x 16x 16x 16x 16x 16x 1x 20x 5x 15x 15x 15x 15x 45x 15x 15x 15x 9x 15x 15x 15x 15x 15x 15x 15x 1x 1x 1x 1x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 13x 12x 12x 12x 1x 1x 1x 13x 13x 13x 12x 1x 13x 13x 3x 3x 4x 3x 3x 3x 3x 3x 3x 4x 4x 4x 4x 4x 4x 4x 4x 4x 16x 16x 16x 16x 4x 4x 10x 10x 10x 10x 3x 3x 4x 4x 4x 4x 4x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 9x 9x 2x 2x 2x 2x 2x 2x 2x 9x 1x 8x 8x 8x 5x 5x 5x 5x 5x 16x 16x 16x 8x 16x 16x 16x 16x 16x 61x 61x 16x | import ArcType from "./ArcType.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian3 from "./Cartesian3.js";
import Color from "./Color.js";
import ComponentDatatype from "./ComponentDatatype.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PolylinePipeline from "./PolylinePipeline.js";
import PrimitiveType from "./PrimitiveType.js";
function interpolateColors(p0, p1, color0, color1, minDistance, array, offset) {
const numPoints = PolylinePipeline.numberOfPoints(p0, p1, minDistance);
let i;
const r0 = color0.red;
const g0 = color0.green;
const b0 = color0.blue;
const a0 = color0.alpha;
const r1 = color1.red;
const g1 = color1.green;
const b1 = color1.blue;
const a1 = color1.alpha;
Iif (Color.equals(color0, color1)) {
for (i = 0; i < numPoints; i++) {
array[offset++] = Color.floatToByte(r0);
array[offset++] = Color.floatToByte(g0);
array[offset++] = Color.floatToByte(b0);
array[offset++] = Color.floatToByte(a0);
}
return offset;
}
const redPerVertex = (r1 - r0) / numPoints;
const greenPerVertex = (g1 - g0) / numPoints;
const bluePerVertex = (b1 - b0) / numPoints;
const alphaPerVertex = (a1 - a0) / numPoints;
let index = offset;
for (i = 0; i < numPoints; i++) {
array[index++] = Color.floatToByte(r0 + i * redPerVertex);
array[index++] = Color.floatToByte(g0 + i * greenPerVertex);
array[index++] = Color.floatToByte(b0 + i * bluePerVertex);
array[index++] = Color.floatToByte(a0 + i * alphaPerVertex);
}
return index;
}
/**
* A description of a polyline modeled as a line strip; the first two positions define a line segment,
* and each additional position defines a line segment from the previous position.
*
* @alias SimplePolylineGeometry
* @constructor
*
* @param {object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip.
* @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors.
* @param {boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices.
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow.
* @param {number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid to be used as a reference.
*
* @exception {DeveloperError} At least two positions are required.
* @exception {DeveloperError} colors has an invalid length.
*
* @see SimplePolylineGeometry#createGeometry
*
* @example
* // A polyline with two connected line segments
* const polyline = new Cesium.SimplePolylineGeometry({
* positions : Cesium.Cartesian3.fromDegreesArray([
* 0.0, 0.0,
* 5.0, 0.0,
* 5.0, 5.0
* ])
* });
* const geometry = Cesium.SimplePolylineGeometry.createGeometry(polyline);
*/
function SimplePolylineGeometry(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const positions = options.positions;
const colors = options.colors;
const colorsPerVertex = options.colorsPerVertex ?? false;
//>>includeStart('debug', pragmas.debug);
if (!defined(positions) || positions.length < 2) {
throw new DeveloperError("At least two positions are required.");
}
if (
defined(colors) &&
((colorsPerVertex && colors.length < positions.length) ||
(!colorsPerVertex && colors.length < positions.length - 1))
) {
throw new DeveloperError("colors has an invalid length.");
}
//>>includeEnd('debug');
this._positions = positions;
this._colors = colors;
this._colorsPerVertex = colorsPerVertex;
this._arcType = options.arcType ?? ArcType.GEODESIC;
this._granularity = options.granularity ?? CesiumMath.RADIANS_PER_DEGREE;
this._ellipsoid = options.ellipsoid ?? Ellipsoid.default;
this._workerName = "createSimplePolylineGeometry";
let numComponents = 1 + positions.length * Cartesian3.packedLength;
numComponents += defined(colors) ? 1 + colors.length * Color.packedLength : 1;
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
this.packedLength = numComponents + Ellipsoid.packedLength + 3;
}
/**
* Stores the provided instance into the provided array.
*
* @param {SimplePolylineGeometry} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
SimplePolylineGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
let i;
const positions = value._positions;
let length = positions.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
Cartesian3.pack(positions[i], array, startingIndex);
}
const colors = value._colors;
length = defined(colors) ? colors.length : 0.0;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {
Color.pack(colors[i], array, startingIndex);
}
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;
array[startingIndex++] = value._arcType;
array[startingIndex] = value._granularity;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {SimplePolylineGeometry} [result] The object into which to store the result.
* @returns {SimplePolylineGeometry} The modified result parameter or a new SimplePolylineGeometry instance if one was not provided.
*/
SimplePolylineGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
let i;
let length = array[startingIndex++];
const positions = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
positions[i] = Cartesian3.unpack(array, startingIndex);
}
length = array[startingIndex++];
const colors = length > 0 ? new Array(length) : undefined;
for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {
colors[i] = Color.unpack(array, startingIndex);
}
const ellipsoid = Ellipsoid.unpack(array, startingIndex);
startingIndex += Ellipsoid.packedLength;
const colorsPerVertex = array[startingIndex++] === 1.0;
const arcType = array[startingIndex++];
const granularity = array[startingIndex];
Eif (!defined(result)) {
return new SimplePolylineGeometry({
positions: positions,
colors: colors,
ellipsoid: ellipsoid,
colorsPerVertex: colorsPerVertex,
arcType: arcType,
granularity: granularity,
});
}
result._positions = positions;
result._colors = colors;
result._ellipsoid = ellipsoid;
result._colorsPerVertex = colorsPerVertex;
result._arcType = arcType;
result._granularity = granularity;
return result;
};
const scratchArray1 = new Array(2);
const scratchArray2 = new Array(2);
const generateArcOptionsScratch = {
positions: scratchArray1,
height: scratchArray2,
ellipsoid: undefined,
minDistance: undefined,
granularity: undefined,
};
/**
* Computes the geometric representation of a simple polyline, including its vertices, indices, and a bounding sphere.
*
* @param {SimplePolylineGeometry} simplePolylineGeometry A description of the polyline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
SimplePolylineGeometry.createGeometry = function (simplePolylineGeometry) {
const positions = simplePolylineGeometry._positions;
const colors = simplePolylineGeometry._colors;
const colorsPerVertex = simplePolylineGeometry._colorsPerVertex;
const arcType = simplePolylineGeometry._arcType;
const granularity = simplePolylineGeometry._granularity;
const ellipsoid = simplePolylineGeometry._ellipsoid;
const minDistance = CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius,
);
const perSegmentColors = defined(colors) && !colorsPerVertex;
let i;
const length = positions.length;
let positionValues;
let numberOfPositions;
let colorValues;
let color;
let offset = 0;
if (arcType === ArcType.GEODESIC || arcType === ArcType.RHUMB) {
let subdivisionSize;
let numberOfPointsFunction;
let generateArcFunction;
if (arcType === ArcType.GEODESIC) {
subdivisionSize = CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius,
);
numberOfPointsFunction = PolylinePipeline.numberOfPoints;
generateArcFunction = PolylinePipeline.generateArc;
} else {
subdivisionSize = granularity;
numberOfPointsFunction = PolylinePipeline.numberOfPointsRhumbLine;
generateArcFunction = PolylinePipeline.generateRhumbArc;
}
const heights = PolylinePipeline.extractHeights(positions, ellipsoid);
const generateArcOptions = generateArcOptionsScratch;
if (arcType === ArcType.GEODESIC) {
generateArcOptions.minDistance = minDistance;
} else {
generateArcOptions.granularity = granularity;
}
generateArcOptions.ellipsoid = ellipsoid;
if (perSegmentColors) {
let positionCount = 0;
for (i = 0; i < length - 1; i++) {
positionCount +=
numberOfPointsFunction(
positions[i],
positions[i + 1],
subdivisionSize,
) + 1;
}
positionValues = new Float64Array(positionCount * 3);
colorValues = new Uint8Array(positionCount * 4);
generateArcOptions.positions = scratchArray1;
generateArcOptions.height = scratchArray2;
let ci = 0;
for (i = 0; i < length - 1; ++i) {
scratchArray1[0] = positions[i];
scratchArray1[1] = positions[i + 1];
scratchArray2[0] = heights[i];
scratchArray2[1] = heights[i + 1];
const pos = generateArcFunction(generateArcOptions);
Eif (defined(colors)) {
const segLen = pos.length / 3;
color = colors[i];
for (let k = 0; k < segLen; ++k) {
colorValues[ci++] = Color.floatToByte(color.red);
colorValues[ci++] = Color.floatToByte(color.green);
colorValues[ci++] = Color.floatToByte(color.blue);
colorValues[ci++] = Color.floatToByte(color.alpha);
}
}
positionValues.set(pos, offset);
offset += pos.length;
}
} else {
generateArcOptions.positions = positions;
generateArcOptions.height = heights;
positionValues = new Float64Array(
generateArcFunction(generateArcOptions),
);
if (defined(colors)) {
colorValues = new Uint8Array((positionValues.length / 3) * 4);
for (i = 0; i < length - 1; ++i) {
const p0 = positions[i];
const p1 = positions[i + 1];
const c0 = colors[i];
const c1 = colors[i + 1];
offset = interpolateColors(
p0,
p1,
c0,
c1,
minDistance,
colorValues,
offset,
);
}
const lastColor = colors[length - 1];
colorValues[offset++] = Color.floatToByte(lastColor.red);
colorValues[offset++] = Color.floatToByte(lastColor.green);
colorValues[offset++] = Color.floatToByte(lastColor.blue);
colorValues[offset++] = Color.floatToByte(lastColor.alpha);
}
}
} else {
numberOfPositions = perSegmentColors ? length * 2 - 2 : length;
positionValues = new Float64Array(numberOfPositions * 3);
colorValues = defined(colors)
? new Uint8Array(numberOfPositions * 4)
: undefined;
let positionIndex = 0;
let colorIndex = 0;
for (i = 0; i < length; ++i) {
const p = positions[i];
if (perSegmentColors && i > 0) {
Cartesian3.pack(p, positionValues, positionIndex);
positionIndex += 3;
color = colors[i - 1];
colorValues[colorIndex++] = Color.floatToByte(color.red);
colorValues[colorIndex++] = Color.floatToByte(color.green);
colorValues[colorIndex++] = Color.floatToByte(color.blue);
colorValues[colorIndex++] = Color.floatToByte(color.alpha);
}
if (perSegmentColors && i === length - 1) {
break;
}
Cartesian3.pack(p, positionValues, positionIndex);
positionIndex += 3;
if (defined(colors)) {
color = colors[i];
colorValues[colorIndex++] = Color.floatToByte(color.red);
colorValues[colorIndex++] = Color.floatToByte(color.green);
colorValues[colorIndex++] = Color.floatToByte(color.blue);
colorValues[colorIndex++] = Color.floatToByte(color.alpha);
}
}
}
const attributes = new GeometryAttributes();
attributes.position = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positionValues,
});
if (defined(colors)) {
attributes.color = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 4,
values: colorValues,
normalize: true,
});
}
numberOfPositions = positionValues.length / 3;
const numberOfIndices = (numberOfPositions - 1) * 2;
const indices = IndexDatatype.createTypedArray(
numberOfPositions,
numberOfIndices,
);
let index = 0;
for (i = 0; i < numberOfPositions - 1; ++i) {
indices[index++] = i;
indices[index++] = i + 1;
}
return new Geometry({
attributes: attributes,
indices: indices,
primitiveType: PrimitiveType.LINES,
boundingSphere: BoundingSphere.fromPoints(positions),
});
};
export default SimplePolylineGeometry;
|