All files / engine/Source/DataSources EntityView.js

68.23% Statements 116/170
71.62% Branches 53/74
100% Functions 5/5
68.23% Lines 116/170

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477                              1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                           19x 19x 19x 19x 19x         19x     19x 19x           19x                 19x 19x       19x           19x                             19x           19x         19x           19x           19x   19x   19x       19x                                                                       19x                                                                                                         19x 8x             19x 16x       16x       16x     19x     19x             19x   19x                   19x                     19x       19x                                       19x   19x 16x 16x 16x 16x       19x   5x       5x                             14x 13x             12x           12x           12x           12x     12x 12x   12x 12x   12x   12x       1x                 2x     12x           1x   1x 1x               1x   21x     20x 20x 20x 20x       20x 20x 20x 20x 1x   19x 19x 19x 19x   19x   19x 19x   19x 8x 8x   8x       3x 3x 3x 3x   3x           3x     3x 3x 3x 3x 5x       3x   11x 11x     19x 19x   19x                            
import Cartesian3 from "../Core/Cartesian3.js";
import Check from "../Core/Check.js";
import defined from "../Core/defined.js";
import Ellipsoid from "../Core/Ellipsoid.js";
import HeadingPitchRange from "../Core/HeadingPitchRange.js";
import JulianDate from "../Core/JulianDate.js";
import CesiumMath from "../Core/Math.js";
import Matrix3 from "../Core/Matrix3.js";
import Matrix4 from "../Core/Matrix4.js";
import Quaternion from "../Core/Quaternion.js";
import TrackingReferenceFrame from "../Core/TrackingReferenceFrame.js";
import Transforms from "../Core/Transforms.js";
import SceneMode from "../Scene/SceneMode.js";
import VelocityVectorProperty from "./VelocityVectorProperty.js";
 
const updateTransformMatrix3Scratch1 = new Matrix3();
const updateTransformMatrix3Scratch2 = new Matrix3();
const updateTransformMatrix3Scratch3 = new Matrix3();
const updateTransformMatrix4Scratch = new Matrix4();
const updateTransformCartesian3Scratch1 = new Cartesian3();
const updateTransformCartesian3Scratch2 = new Cartesian3();
const updateTransformCartesian3Scratch3 = new Cartesian3();
const updateTransformCartesian3Scratch4 = new Cartesian3();
const updateTransformCartesian3Scratch5 = new Cartesian3();
const updateTransformCartesian3Scratch6 = new Cartesian3();
const updateTransformOrientationScratch = new Quaternion();
const velocityScratch = new Cartesian3();
const rotationScratch = new Matrix3();
const deltaTime = new JulianDate();
const northUpAxisFactor = 1.25; // times ellipsoid's maximum radius
 
function updateTransform(
  that,
  camera,
  updateLookAt,
  saveCamera,
  positionProperty,
  velocityProperty,
  orientationProperty,
  trackingReferenceFrame,
  time,
  ellipsoid,
) {
  const mode = that.scene.mode;
  let cartesian = positionProperty.getValue(time, that._lastCartesian);
  Eif (defined(cartesian)) {
    let hasBasis = false;
    let invertVelocity = false;
    let xBasis;
    let yBasis;
    let zBasis;
 
    Eif (mode === SceneMode.SCENE3D) {
      // The time delta was determined based on how fast satellites move compared to vehicles near the surface.
      // Slower moving vehicles will most likely default to east-north-up, while faster ones will be VVLH.
      JulianDate.addSeconds(time, 0.001, deltaTime);
      let deltaCartesian = positionProperty.getValue(
        deltaTime,
        updateTransformCartesian3Scratch1,
      );
 
      // If no valid position at (time + 0.001), sample at (time - 0.001) and invert the vector
      Iif (!defined(deltaCartesian)) {
        JulianDate.addSeconds(time, -0.001, deltaTime);
        deltaCartesian = positionProperty.getValue(
          deltaTime,
          updateTransformCartesian3Scratch1,
        );
        invertVelocity = true;
      }
 
      Eif (defined(deltaCartesian)) {
        let toInertial = Transforms.computeFixedToIcrfMatrix(
          time,
          updateTransformMatrix3Scratch1,
        );
        let toInertialDelta = Transforms.computeFixedToIcrfMatrix(
          deltaTime,
          updateTransformMatrix3Scratch2,
        );
        let toFixed;
 
        Iif (!defined(toInertial) || !defined(toInertialDelta)) {
          toFixed = Transforms.computeTemeToPseudoFixedMatrix(
            time,
            updateTransformMatrix3Scratch3,
          );
          toInertial = Matrix3.transpose(
            toFixed,
            updateTransformMatrix3Scratch1,
          );
          toInertialDelta = Transforms.computeTemeToPseudoFixedMatrix(
            deltaTime,
            updateTransformMatrix3Scratch2,
          );
          Matrix3.transpose(toInertialDelta, toInertialDelta);
        } else {
          toFixed = Matrix3.transpose(
            toInertial,
            updateTransformMatrix3Scratch3,
          );
        }
 
        const inertialCartesian = Matrix3.multiplyByVector(
          toInertial,
          cartesian,
          updateTransformCartesian3Scratch5,
        );
        const inertialDeltaCartesian = Matrix3.multiplyByVector(
          toInertialDelta,
          deltaCartesian,
          updateTransformCartesian3Scratch6,
        );
 
        Cartesian3.subtract(
          inertialCartesian,
          inertialDeltaCartesian,
          updateTransformCartesian3Scratch4,
        );
        const inertialVelocity =
          Cartesian3.magnitude(updateTransformCartesian3Scratch4) * 1000.0; // meters/sec
 
        const mu = CesiumMath.GRAVITATIONALPARAMETER; // m^3 / sec^2
        const semiMajorAxis =
          -mu /
          (inertialVelocity * inertialVelocity -
            (2 * mu) / Cartesian3.magnitude(inertialCartesian));
 
        Iif (
          semiMajorAxis < 0 ||
          semiMajorAxis > northUpAxisFactor * ellipsoid.maximumRadius
        ) {
          // North-up viewing from deep space.
 
          // X along the nadir
          xBasis = updateTransformCartesian3Scratch2;
          Cartesian3.normalize(cartesian, xBasis);
          Cartesian3.negate(xBasis, xBasis);
 
          // Z is North
          zBasis = Cartesian3.clone(
            Cartesian3.UNIT_Z,
            updateTransformCartesian3Scratch3,
          );
 
          // Y is along the cross of z and x (right handed basis / in the direction of motion)
          yBasis = Cartesian3.cross(
            zBasis,
            xBasis,
            updateTransformCartesian3Scratch1,
          );
          if (Cartesian3.magnitude(yBasis) > CesiumMath.EPSILON7) {
            Cartesian3.normalize(xBasis, xBasis);
            Cartesian3.normalize(yBasis, yBasis);
 
            zBasis = Cartesian3.cross(
              xBasis,
              yBasis,
              updateTransformCartesian3Scratch3,
            );
            Cartesian3.normalize(zBasis, zBasis);
 
            hasBasis = true;
          }
        } else Iif (
          !Cartesian3.equalsEpsilon(
            cartesian,
            deltaCartesian,
            CesiumMath.EPSILON7,
          )
        ) {
          // Approximation of VVLH (Vehicle Velocity Local Horizontal) with the Z-axis flipped.
 
          // Z along the position
          zBasis = updateTransformCartesian3Scratch2;
          Cartesian3.normalize(inertialCartesian, zBasis);
          Cartesian3.normalize(inertialDeltaCartesian, inertialDeltaCartesian);
 
          // Y is along the angular momentum vector (e.g. "orbit normal")
          yBasis = Cartesian3.cross(
            zBasis,
            inertialDeltaCartesian,
            updateTransformCartesian3Scratch3,
          );
 
          if (invertVelocity) {
            yBasis = Cartesian3.multiplyByScalar(yBasis, -1, yBasis);
          }
 
          if (
            !Cartesian3.equalsEpsilon(
              yBasis,
              Cartesian3.ZERO,
              CesiumMath.EPSILON7,
            )
          ) {
            // X is along the cross of y and z (right handed basis / in the direction of motion)
            xBasis = Cartesian3.cross(
              yBasis,
              zBasis,
              updateTransformCartesian3Scratch1,
            );
 
            Matrix3.multiplyByVector(toFixed, xBasis, xBasis);
            Matrix3.multiplyByVector(toFixed, yBasis, yBasis);
            Matrix3.multiplyByVector(toFixed, zBasis, zBasis);
 
            Cartesian3.normalize(xBasis, xBasis);
            Cartesian3.normalize(yBasis, yBasis);
            Cartesian3.normalize(zBasis, zBasis);
 
            hasBasis = true;
          }
        }
      }
    }
 
    if (defined(that.boundingSphere)) {
      cartesian = that.boundingSphere.center;
    }
 
    let position;
    let direction;
    let up;
 
    if (saveCamera) {
      position = Cartesian3.clone(
        camera.position,
        updateTransformCartesian3Scratch4,
      );
      direction = Cartesian3.clone(
        camera.direction,
        updateTransformCartesian3Scratch5,
      );
      up = Cartesian3.clone(camera.up, updateTransformCartesian3Scratch6);
    }
 
    const transform = updateTransformMatrix4Scratch;
 
    let orientation;
    Iif (defined(orientationProperty)) {
      orientation = orientationProperty.getValue(
        time,
        updateTransformOrientationScratch,
      );
    }
 
    const velocity = velocityProperty.getValue(time, velocityScratch);
 
    Iif (
      trackingReferenceFrame === TrackingReferenceFrame.INERTIAL &&
      defined(orientation)
    ) {
      Matrix4.fromTranslationQuaternionRotationScale(
        cartesian,
        orientation,
        Cartesian3.ONE,
        transform,
      );
    } else Iif (
      trackingReferenceFrame === TrackingReferenceFrame.VELOCITY &&
      defined(velocity)
    ) {
      const rotation = Transforms.rotationMatrixFromPositionVelocity(
        cartesian,
        velocity,
        ellipsoid,
        rotationScratch,
      );
      Matrix4.fromRotationTranslation(rotation, cartesian, transform);
    } else if (
      trackingReferenceFrame === TrackingReferenceFrame.ENU ||
      !hasBasis
    ) {
      Transforms.eastNorthUpToFixedFrame(cartesian, ellipsoid, transform);
    } else E{
      transform[0] = xBasis.x;
      transform[1] = xBasis.y;
      transform[2] = xBasis.z;
      transform[3] = 0.0;
      transform[4] = yBasis.x;
      transform[5] = yBasis.y;
      transform[6] = yBasis.z;
      transform[7] = 0.0;
      transform[8] = zBasis.x;
      transform[9] = zBasis.y;
      transform[10] = zBasis.z;
      transform[11] = 0.0;
      transform[12] = cartesian.x;
      transform[13] = cartesian.y;
      transform[14] = cartesian.z;
      transform[15] = 0.0;
    }
 
    camera._setTransform(transform);
 
    if (saveCamera) {
      Cartesian3.clone(position, camera.position);
      Cartesian3.clone(direction, camera.direction);
      Cartesian3.clone(up, camera.up);
      Cartesian3.cross(direction, up, camera.right);
    }
  }
 
  if (updateLookAt) {
    const offset =
      mode === SceneMode.SCENE2D ||
      Cartesian3.equals(that._offset3D, Cartesian3.ZERO)
        ? undefined
        : that._offset3D;
    camera.lookAtTransform(camera.transform, offset);
  }
}
 
/**
 * A utility object for tracking an entity with the camera.
 * @alias EntityView
 * @constructor
 *
 * @param {Entity} entity The entity to track with the camera.
 * @param {Scene} scene The scene to use.
 * @param {Ellipsoid} [ellipsoid=Ellipsoid.default] The ellipsoid to use for orienting the camera.
 */
function EntityView(entity, scene, ellipsoid) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("entity", entity);
  Check.defined("scene", scene);
  //>>includeEnd('debug');
 
  /**
   * The entity to track with the camera.
   * @type {Entity}
   */
  this.entity = entity;
 
  /**
   * The scene in which to track the object.
   * @type {Scene}
   */
  this.scene = scene;
 
  /**
   * The ellipsoid to use for orienting the camera.
   * @type {Ellipsoid}
   */
  this.ellipsoid = ellipsoid ?? Ellipsoid.default;
 
  /**
   * The bounding sphere of the object.
   * @type {BoundingSphere}
   */
  this.boundingSphere = undefined;
 
  // Shadow copies of the objects so we can detect changes.
  this._lastEntity = undefined;
  this._mode = undefined;
 
  this._lastCartesian = new Cartesian3();
  this._defaultOffset3D = undefined;
 
  this._velocityProperty = new VelocityVectorProperty(entity.position, true);
 
  this._offset3D = new Cartesian3();
}
 
// STATIC properties defined here, not per-instance.
Object.defineProperties(EntityView, {
  /**
   * Gets or sets a camera offset that will be used to
   * initialize subsequent EntityViews.
   * @memberof EntityView
   * @type {Cartesian3}
   */
  defaultOffset3D: {
    get: function () {
      return this._defaultOffset3D;
    },
    set: function (vector) {
      this._defaultOffset3D = Cartesian3.clone(vector, new Cartesian3());
    },
  },
});
 
// Initialize the static property.
EntityView.defaultOffset3D = new Cartesian3(-14000, 3500, 3500);
 
const scratchHeadingPitchRange = new HeadingPitchRange();
const scratchCartesian = new Cartesian3();
 
/**
 * Should be called each animation frame to update the camera
 * to the latest settings.
 * @param {JulianDate} time The current animation time.
 * @param {BoundingSphere} [boundingSphere] bounding sphere of the object.
 */
EntityView.prototype.update = function (time, boundingSphere) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("time", time);
  //>>includeEnd('debug');
 
  const scene = this.scene;
  const ellipsoid = this.ellipsoid;
  const sceneMode = scene.mode;
  Iif (sceneMode === SceneMode.MORPHING) {
    return;
  }
 
  const entity = this.entity;
  const trackingReferenceFrame = entity.trackingReferenceFrame;
  const positionProperty = entity.position;
  if (!defined(positionProperty)) {
    return;
  }
  const velocityProperty = this._velocityProperty;
  const orientationProperty = entity.orientation;
  const objectChanged = entity !== this._lastEntity;
  const sceneModeChanged = sceneMode !== this._mode;
 
  const camera = scene.camera;
 
  let updateLookAt = objectChanged || sceneModeChanged;
  let saveCamera = true;
 
  if (objectChanged) {
    const viewFromProperty = entity.viewFrom;
    const hasViewFrom = defined(viewFromProperty);
 
    if (!hasViewFrom && defined(boundingSphere)) {
      // The default HPR is not ideal for high altitude objects so
      // we scale the pitch as we get further from the earth for a more
      // downward view.
      scratchHeadingPitchRange.pitch = -CesiumMath.PI_OVER_FOUR;
      scratchHeadingPitchRange.range = 0;
      const position = positionProperty.getValue(time, scratchCartesian);
      Eif (defined(position)) {
        const factor =
          2 -
          1 /
            Math.max(
              1,
              Cartesian3.magnitude(position) / ellipsoid.maximumRadius,
            );
        scratchHeadingPitchRange.pitch *= factor;
      }
 
      camera.viewBoundingSphere(boundingSphere, scratchHeadingPitchRange);
      this.boundingSphere = boundingSphere;
      updateLookAt = false;
      saveCamera = false;
    } else if (
      !hasViewFrom ||
      !defined(viewFromProperty.getValue(time, this._offset3D))
    ) {
      Cartesian3.clone(EntityView._defaultOffset3D, this._offset3D);
    }
  } else Eif (!sceneModeChanged && this._mode !== SceneMode.SCENE2D) {
    Cartesian3.clone(camera.position, this._offset3D);
  }
 
  this._lastEntity = entity;
  this._mode = sceneMode;
 
  updateTransform(
    this,
    camera,
    updateLookAt,
    saveCamera,
    positionProperty,
    velocityProperty,
    orientationProperty,
    trackingReferenceFrame,
    time,
    ellipsoid,
  );
};
export default EntityView;