Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | //This file is automatically rebuilt by the Cesium build process.
export default "uniform vec2 u_cylinderLocalToShapeUvRadius; // x = scale, y = offset\n\
uniform vec2 u_cylinderLocalToShapeUvHeight; // x = scale, y = offset\n\
uniform vec2 u_cylinderLocalToShapeUvAngle; // x = scale, y = offset\n\
uniform float u_cylinderShapeUvAngleRangeOrigin;\n\
uniform mat3 u_cylinderEcToRadialTangentUp;\n\
uniform ivec4 u_cameraTileCoordinates;\n\
uniform vec3 u_cameraTileUv;\n\
uniform vec3 u_cameraShapePosition; // (radial distance, angle, height) of camera in shape space\n\
\n\
mat3 convertLocalToShapeSpaceDerivative(in vec3 position) {\n\
vec3 radial = normalize(vec3(position.xy, 0.0));\n\
vec3 z = vec3(0.0, 0.0, 1.0);\n\
vec3 east = normalize(vec3(-position.y, position.x, 0.0));\n\
return mat3(radial, east / length(position.xy), z);\n\
}\n\
\n\
vec3 scaleShapeUvToShapeSpace(in vec3 shapeUv) {\n\
float radius = shapeUv.x / u_cylinderLocalToShapeUvRadius.x;\n\
float angle = shapeUv.y * czm_twoPi / u_cylinderLocalToShapeUvAngle.x;\n\
float height = shapeUv.z / u_cylinderLocalToShapeUvHeight.x;\n\
\n\
return vec3(radius, angle, height);\n\
}\n\
\n\
/**\n\
* Computes the change in polar coordinates given a change in position.\n\
* @param {vec2} dPosition The change in position in Cartesian coordinates.\n\
* @param {float} cameraRadialDistance The radial distance of the camera from the origin.\n\
* @return {vec2} The change in polar coordinates (radial distance, angle).\n\
*/\n\
vec2 computePolarChange(in vec2 dPosition, in float cameraRadialDistance) {\n\
float dAngle = atan(dPosition.y, cameraRadialDistance + dPosition.x);\n\
// Find the direction of the radial axis at the output angle, in Cartesian coordinates\n\
vec2 outputRadialAxis = vec2(cos(dAngle), sin(dAngle));\n\
float sinHalfAngle = sin(dAngle / 2.0);\n\
float versine = 2.0 * sinHalfAngle * sinHalfAngle;\n\
float dRadial = dot(dPosition, outputRadialAxis) - cameraRadialDistance * versine;\n\
return vec2(dRadial, dAngle);\n\
}\n\
\n\
vec3 convertEcToDeltaShape(in vec3 positionEC) {\n\
// 1. Rotate to radial, tangent, and up coordinates\n\
vec3 rtu = u_cylinderEcToRadialTangentUp * positionEC;\n\
// 2. Compute change in angular and radial coordinates.\n\
vec2 dPolar = computePolarChange(rtu.xy, u_cameraShapePosition.x);\n\
return vec3(dPolar.xy, rtu.z);\n\
}\n\
\n\
vec3 convertEcToDeltaTile(in vec3 positionEC) {\n\
vec3 deltaShape = convertEcToDeltaShape(positionEC);\n\
// Convert to tileset coordinates in [0, 1]\n\
float dx = u_cylinderLocalToShapeUvRadius.x * deltaShape.x;\n\
float dy = deltaShape.y / czm_twoPi;\n\
#if defined(CYLINDER_HAS_SHAPE_BOUNDS_ANGLE)\n\
// Wrap to ensure dy is not crossing through the unoccupied angle range, where\n\
// angle to tile coordinate conversions would be more complicated\n\
float cameraUvAngle = (u_cameraShapePosition.y + czm_pi) / czm_twoPi;\n\
float cameraUvAngleShift = fract(cameraUvAngle - u_cylinderShapeUvAngleRangeOrigin);\n\
float rawOutputUvAngle = cameraUvAngleShift + dy;\n\
float rotation = floor(rawOutputUvAngle);\n\
dy -= rotation;\n\
#endif\n\
dy *= u_cylinderLocalToShapeUvAngle.x;\n\
float dz = u_cylinderLocalToShapeUvHeight.x * deltaShape.z;\n\
// Convert to tile coordinate changes\n\
return vec3(dx, dy, dz) * float(1 << u_cameraTileCoordinates.w);\n\
}\n\
\n\
TileAndUvCoordinate getTileAndUvCoordinate(in vec3 positionEC) {\n\
vec3 deltaTileCoordinate = convertEcToDeltaTile(positionEC);\n\
vec3 tileUvSum = u_cameraTileUv + deltaTileCoordinate;\n\
ivec3 tileCoordinate = u_cameraTileCoordinates.xyz + ivec3(floor(tileUvSum));\n\
int maxTileCoordinate = (1 << u_cameraTileCoordinates.w) - 1;\n\
tileCoordinate.x = min(max(0, tileCoordinate.x), maxTileCoordinate);\n\
tileCoordinate.z = min(max(0, tileCoordinate.z), maxTileCoordinate);\n\
#if (!defined(CYLINDER_HAS_SHAPE_BOUNDS_ANGLE))\n\
ivec3 tileCoordinateChange = tileCoordinate - u_cameraTileCoordinates.xyz;\n\
if (tileCoordinate.y < 0) {\n\
tileCoordinate.y += (maxTileCoordinate + 1);\n\
} else if (tileCoordinate.y > maxTileCoordinate) {\n\
tileCoordinate.y -= (maxTileCoordinate + 1);\n\
}\n\
#else\n\
tileCoordinate.y = min(max(0, tileCoordinate.y), maxTileCoordinate);\n\
ivec3 tileCoordinateChange = tileCoordinate - u_cameraTileCoordinates.xyz;\n\
#endif\n\
vec3 tileUv = tileUvSum - vec3(tileCoordinateChange);\n\
tileUv.x = clamp(tileUv.x, 0.0, 1.0);\n\
#if (!defined(CYLINDER_HAS_SHAPE_BOUNDS_ANGLE))\n\
// If there is only one tile spanning 2*PI angle, the coordinate wraps around\n\
tileUv.y = (u_cameraTileCoordinates.w == 0) ? fract(tileUv.y) : clamp(tileUv.y, 0.0, 1.0);\n\
#else\n\
tileUv.y = clamp(tileUv.y, 0.0, 1.0);\n\
#endif\n\
tileUv.z = clamp(tileUv.z, 0.0, 1.0);\n\
return TileAndUvCoordinate(ivec4(tileCoordinate, u_cameraTileCoordinates.w), tileUv);\n\
}\n\
";
|